The friction and wear properties of in situ Al-matrix composites prepared by selective laser melting (SLM) were evaluated on a ball-on-disk tribometer by sliding against GCr15 steel at room temperature. The influence of the applied load, sliding speed, and long-time continuous friction on the friction and wear properties of Al-matrix composites was systematically investigated. It showed that the wear rate and coefficient of friction (COF) increased when the applied load increased, due to the higher contact stress and larger extent of particle fracturing. As the sliding speed increased, the elevated rate of the formation of Al-oxide layer and the transfer of Fe-oxide layer from the counterface to the worn surface led to a significant reduction in wear rate and COF. As the sliding distance prolonged, the worn surface successively experienced the adhesive wear, the abrasive wear, the particle fracturing and crack nucleation, and the delaminated wear. The above processes were repeated on each exposed fresh surface, resulting in the fluctuation of COF. In the later stage of wear process, a large amount of oxides were produced on the worn surface, caused by the long-time accumulated frictional heat, which reduced the fluctuation of COF. The wear mechanisms of SLM-processed Al-matrix composite parts under various loads were dominated by abrasive wear and oxidation wear, whereas the predominant wear mechanisms were oxidation wear and delamination wear at different sliding speeds. For the long-time friction, all of these wear mechanisms were operational.

References

References
1.
Olakanmi
,
E. O.
,
Cochrane
,
R. F.
, and
Dalgarno
,
K. W.
,
2015
, “
A Review on Selective Laser Sintering/Melting (SLS/SLM) of Aluminium Alloy Powders: Processing, Microstructure, and Properties
,”
Prog. Mater. Sci.
,
74
, pp.
401
477
.
2.
Ibrahim
,
I. A.
,
Mohamed
,
F. A.
, and
Lavernia
,
E. J.
,
1991
, “
Particulate Reinforced Metal Matrix Composites—A Review
,”
J. Mater. Sci.
,
26
(
5
), pp.
1137
1156
.
3.
Sc
,
P. R. D.
,
1991
, “
Cast Aluminum-Matrix Composites for Automotive Applications
,”
JOM
,
43
(
4
), pp.
10
15
.
4.
Prasad
,
S. V.
, and
Asthana
,
R.
,
2004
, “
Aluminum Metal-Matrix Composites for Automotive Applications: Tribological Considerations
,”
Tribol. Lett.
,
17
(
3
), pp.
445
453
.
5.
Tripathi
,
K.
,
Joshi
,
B.
,
Gyawali
,
G.
,
Amanov
,
A.
, and
Lee
,
S. W.
,
2015
, “
A Study on the Effect of Laser Surface Texturing on Friction and Wear Behavior of Graphite Cast Iron
,”
ASME J. Tribol.
,
138
(
1
), p.
011601
.
6.
El-Kady
,
O.
, and
Fathy
,
A.
,
2014
, “
Effect of SiC Particle Size on the Physical and Mechanical Properties of Extruded Al Matrix Nanocomposites
,”
Mater. Des.
,
54
(
2
), pp.
348
353
.
7.
Du
,
J.
,
Liu
,
Y. H.
,
Yu
,
S. R.
, and
Li
,
W. F.
,
2004
, “
Dry Sliding Friction and Wear Properties of Al2O3 and Carbon Short Fibres Reinforced Al-12Si Alloy Hybrid Composites
,”
Wear
,
257
(
9–10
), pp.
930
940
.
8.
Gu
,
D. D.
,
Wang
,
H. Q.
, and
Dai
,
D. H.
,
2015
, “
Laser Additive Manufacturing of Novel Aluminum Based Nanocomposite Parts: Tailored Forming of Multiple Materials
,”
ASME J. Manuf. Sci. Eng.
,
138
(
2
), p.
021004
.
9.
Dandekar
,
C. R.
, and
Shin
,
Y. C.
,
2010
, “
Laser-Assisted Machining of a Fiber Reinforced Metal Matrix Composite
,”
ASME J. Manuf. Sci. Eng.
,
132
(
6
), p.
061004
.
10.
Chandra
,
A.
,
Wang
,
K.
,
Huang
,
Y.
,
Subhash
,
G.
,
Miller
,
M. H.
, and
Qu
,
W.
,
2000
, “
Role of Unloading in Machining of Brittle Materials
,”
ASME J. Manuf. Sci. Eng.
,
122
(
3
), pp.
452
462
.
11.
Hwang
,
T. W.
, and
Malkin
,
S.
,
1999
, “
Grinding Mechanisms and Energy Balance for Ceramics
,”
ASME J. Manuf. Sci. Eng.
,
121
(
4
), pp.
623
631
.
12.
Ho
,
T. L.
, and
Peterson
,
M. B.
,
1977
, “
Wear Formulation for Aircraft Brake Material Sliding Against Steel
,”
Wear
,
43
(
2
), pp.
199
210
.
13.
Surappa
,
M. K.
,
Prasad
,
S. V.
, and
Rohatgi
,
P. K.
,
1982
, “
Wear and Abrasion of Cast Al-Alumina Particle Composites
,”
Wear
,
77
(
3
), pp.
295
302
.
14.
Caracostas
,
C. A.
,
Chiou
,
W. A.
,
Fine
,
M. E.
, and
Cheng
,
H. S.
,
1997
, “
Tribological Properties of Aluminum Alloy Matrix TiB2 Composite Prepared by In Situ Processing
,”
Metall. Mater. Trans. A
,
28
(
2
), pp.
491
502
.
15.
Mangin
,
C. G. E.
,
Isaacs
,
J. A.
, and
Clark
,
J. P.
,
1996
, “
MMCs for Automotive Engine Applications
,”
JOM
,
48
(
2
), pp.
49
51
.
16.
Hutchings
,
I. M.
,
1994
, “
Tribological Properties of Metal Matrix Composites
,”
Mater. Sci. Technol.
,
10
(
6
), pp.
513
517
.
17.
Miyajima
,
T.
, and
Iwai
,
Y.
,
2003
, “
Effects of Reinforcements on Sliding Wear Behavior of Aluminum Matrix Composites
,”
Wear
,
255
(
1–6
), pp.
606
616
.
18.
Ahlatci
,
H.
,
Koçer
,
T.
,
Candan
,
E.
, and
Çimenoğlu
,
H.
,
2006
, “
Wear Behaviour of Al/(Al2O3p+SiCp) Hybrid Composites
,”
Tribol. Int.
,
39
(
3
), pp.
213
220
.
19.
Wang
,
X. H.
,
Zhang
,
M.
, and
Qu
,
S. Y.
,
2010
, “
Microstructure and Wear Properties of Laser Clad (Ti,Mo)C Multiple Carbide Reinforced Fe-Based Composite Coating
,”
ASME J. Tribol.
,
132
(
4
), p.
044503
.
20.
Etsion
,
I.
,
2004
, “
State of the Art in Laser Surface Texturing
,”
ASME J. Tribol.
,
127
(
1
), pp. 248–253.
21.
Laurent
,
V.
,
Chatain
,
D.
,
Chatillon
,
C.
, and
Eustathopoulos
,
N.
,
1988
, “
Wettability of Monocrystalline Alumina by Aluminium Between Its Melting Point and 1273 K
,”
Acta Metall.
,
36
(
7
), pp.
1797
1803
.
22.
Kaplan
,
W. D.
,
1998
, “
Alumina-Aluminium Interfaces
,”
Interfacial Science in Ceramic Joining
, Vol.
58
,
Springer
,
Dordrecht
,
The Netherlands
, pp.
153
160
.
23.
Louvis
,
E.
,
Fox
,
P.
, and
Sutcliffe
,
C. J.
,
2011
, “
Selective Laser Melting of Aluminium Components
,”
J. Mater. Process. Technol.
,
211
(
2
), pp.
275
284
.
24.
Bao
,
S.
,
Tang
,
K.
,
Kvithyld
,
A.
,
Tangstad
,
M.
, and
Engh
,
T. A.
,
2011
, “
Wettability of Aluminum on Alumina
,”
Metall. Mater. Trans. B
,
42
(
6
), pp.
1358
1366
.
25.
Shen
,
P.
,
Fujii
,
H.
,
Matsumoto
,
T.
, and
Nogi
,
K.
,
2004
, “
Critical Factors Affecting the Wettability of α-Alumina by Molten Aluminum
,”
J. Am. Ceram. Soc.
,
87
(
7
), pp. 1265–1273.
26.
Gu
,
D. D.
,
Chang
,
F.
, and
Dai
,
D. H.
,
2014
, “
Selective Laser Melting Additive Manufacturing of Novel Aluminum Based Composites With Multiple Reinforcing Phases
,”
ASME J. Manuf. Sci. Eng.
,
137
(
2
), p.
021010
.
27.
Brizmer
,
V.
, and
Kligerman
,
Y.
,
2012
, “
A Laser Surface Textured Journal Bearing
,”
ASME J. Tribol.
, 134(3), p. 031702.
28.
Feldman
,
Y.
,
Kligerman
,
Y.
, and
Etsion
,
I.
,
2007
, “
Stiffness and Efficiency Optimization of a Hydrostatic Laser Surface Textured Gas Seal
,”
ASME J. Tribol.
,
129
(2), pp. 407–410.
29.
Sercombe
,
T. B.
, and
Schaffer
,
G. B.
,
2003
, “
Rapid Manufacturing of Aluminum Components
,”
Science
,
301
(
5637
), pp.
1225
1227
.
30.
Gu
,
D. D.
,
2015
,
Laser Additive Manufacturing of High-Performance Materials
,
Springer-Verlag
,
Berlin
.
31.
Fu
,
C. H.
, and
Guo
,
Y. B.
,
2014
, “
Three-Dimensional Temperature Gradient Mechanism in Selective Laser Melting of Ti-6Al-4V
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061004
.
32.
Yadroitsev
,
I.
,
Bertrand
,
P.
, and
Smurov
,
I.
,
2007
, “
Parametric Analysis of the Selective Laser Melting Process
,”
Appl. Surf. Sci.
,
253
(
19
), pp.
8064
8069
.
33.
Jue
,
J. B.
,
Gu
,
D. D.
,
Chang
,
K.
, and
Dai
,
D. H.
,
2016
, “
Microstructure Evolution and Mechanical Properties of Al-Al2O3 Composites Fabricated by Selective Laser Melting
,”
Powder Technol.
,
310
, pp.
80
91
.
34.
Hosking
,
F. M.
,
Portillo
,
F. F.
,
Wunderlin
,
R.
, and
Mehrabian
,
R.
,
1982
, “
Composites of Aluminium Alloys: Fabrication and Wear Behavior
,”
J. Mater. Sci.
,
17
(
2
), pp.
477
498
.
35.
Kök
,
M.
,
2006
, “
Abrasive Wear of Al2O3 Particle Reinforced 2024 Aluminium Alloy Composites Fabricated by Vortex Method
,”
Composites, Part A
,
37
(
3
), pp.
457
464
.
36.
Yu
,
S. Y.
,
Ishii
,
H.
,
Tohgo
,
K.
,
Cho
,
Y. T.
, and
Diao
,
D.
,
1997
, “
Temperature Dependence of Sliding Wear Behavior in SiC Whisker or SiC Particulate Reinforced 6061 Aluminum Alloy Composite
,”
Wear
,
213
(
1–2
), pp.
21
28
.
37.
Jue
,
J. B.
, and
Gu
,
D. D.
,
2016
, “
Selective Laser Melting Additive Manufacturing of In Situ Al2Si4O10/Al Composites: Microstructural Characteristics and Mechanical Properties
,”
J. Compos. Mater.
,
51
(4), pp. 519–532.
38.
Gu
,
D. D.
,
Meiners
,
W.
,
Wissenbach
,
K.
, and
Poprawe
,
R.
,
2012
, “
Laser Additive Manufacturing of Metallic Components: Materials, Processes and Mechanisms
,”
Int. Mater. Rev.
,
57
(
3
), pp.
133
164
.
39.
Kubaschewski
,
O.
, and
Hopkins
,
B. E.
,
1962
,
Oxidation of Metals and Alloys
,
Butterworths
,
London
.
40.
Yilbas
,
B. S.
,
Matthews
,
A.
,
Karatas
,
C.
,
Leyland
,
A.
,
Khaled
,
M.
,
Abu-Dheir
,
N.
,
Al-Aqeeli
,
N.
, and
Nie
,
X.
,
2014
, “
Laser Texturing of Plasma Electrolytically Oxidized Aluminum 6061 Surfaces for Improved Hydrophobicity
,”
ASME J. Manuf. Sci. Eng.
,
136
(
5
), p.
054501
.
41.
Tjong
,
S. C.
,
Wang
,
H. Z.
, and
Wu
,
S. Q.
,
1996
, “
Wear Behavior of Aluminum-Based Metal Matrix Composites Reinforced With a Preform of Aluminosilicate Fiber
,”
Metall. Mater. Trans. A
,
27
(
8
), pp.
2385
2389
.
42.
Kannan
,
S.
,
Kishawy
,
H. A.
, and
Balazinski
,
M.
,
2006
, “
Flank Wear Progression During Machining Metal Matrix Composites
,”
ASME J. Manuf. Sci. Eng.
,
128
(
3
), pp.
787
791
.
43.
Kim
,
D. E.
, and
Hwang
,
D. H.
,
1998
, “
Experimental Investigation of the Influence of Machining Condition on the Contact Sliding Behavior of Metals
,”
ASME J. Manuf. Sci. Eng.
,
120
(
2
), pp.
395
400
.
44.
Moustafa
,
S. F.
,
1995
, “
Wear and Wear Mechanisms of Al-22%Si/A12O3f Composite
,”
Wear
,
185
(
1–2
), pp.
189
195
.
45.
Jiang
,
X. S.
,
Wang
,
N. J.
, and
Zhu
,
D. G.
,
2014
, “
Friction and Wear Properties of In-Situ Synthesized Al2O3 Reinforced Aluminum Composites
,”
Trans. Nonferrous Met. Soc. China
,
24
(
7
), pp.
2352
2358
.
46.
Zhang
,
Z. F.
,
Zhang
,
L. C.
, and
Mai
,
Y. W.
,
1995
, “
Wear of Ceramic Particle-Reinforced Metal-Matrix Composites
,”
J. Mater. Sci.
,
30
(
8
), pp.
1967
1971
.
47.
Suh
,
N. P.
,
Saka
,
N.
, and
Jahanmir
,
S.
,
1977
, “
Implications of the Delamination Theory on Wear Minimization
,”
Wear
,
44
(
1
), pp.
127
134
.
48.
Jahanmir
,
S.
, and
Suh
,
N. P.
,
1977
, “
Mechanics of Subsurface Void Nucleation in Delamination Wear
,”
Wear
,
44
(
1
), pp.
17
38
.
49.
Finot
,
M.
,
Shen
,
Y. L.
,
Needleman
,
A.
, and
Suresh
,
S.
,
1994
, “
Micromechanical Modeling of Reinforcement Fracture in Particle-Reinforced Metal-Matrix Composites
,”
Metall. Mater. Trans. A
,
25
(
11
), pp.
2403
2420
.
50.
Guo
,
C.
,
Zhou
,
J. S.
,
Zhao
,
J. R.
, and
Chen
,
J. M.
,
2010
, “
Microstructure and Tribological Properties of ZrB2-Containing Composite Coating Produced on Pure Ti Substrate by Laser Surface Alloying
,”
ASME J. Tribol.
,
133
(
1
), p.
011301
.
51.
Hua
,
X. J.
,
Sun
,
J. G.
,
Zhang
,
P. Y.
,
Liu
,
K.
,
Wang
,
R.
,
Ji
,
J. H.
, and
Fu
,
Y. H.
,
2016
, “
Tribological Properties of Laser Microtextured Surface Bonded With Composite Solid Lubricant at High Temperature
,”
ASME J. Tribol.
,
138
(
3
), p.
031302
.
52.
Cho
,
Y. T.
,
Tohgo
,
K.
, and
Ishii
,
H.
,
1997
, “
Load Carrying Capacity of a Broken Ellipsoidal Inhomogeneity
,”
Acta Mater.
,
45
(
11
), pp.
4787
4795
.
You do not currently have access to this content.