Three-dimensional (3D) woven fabrics have been considered by biomedical researchers to be used as load-bearing surfaces in joint and ligament replacements. In this regard, wear is a crucial phenomenon that determines material failure as well as biological response of body to wear debris. The current study evaluates various microscale screening methods with the aid of atomic force microscopy (AFM) for biocompatible polymer fibers that are used in 3D woven fabrics. Fibers in mono- and multi-filament forms were subjected to indentation, scratching, and line wear testing in dry and soaked conditions, and the effect of key parameters such as applied normal load, sliding velocity, and number of wear cycles was investigated. The area of worn material was determined by geometric approximation superimposed on the measured residual scratch of line wear. Moisture was found to lower the indentation hardness of some fibers while increasing the hardness of others. Line wear results clearly suggest ultrahigh molecular weight polyethylene (UHMWPE) to be the primary material for further investigation and that monofilament fibers should be avoided.

References

References
1.
Moutos
,
F. T.
,
Freed
,
L. E.
, and
Guilak
,
F.
,
2007
, “
A Biomimetic Three-Dimensional Woven Composite Scaffold for Functional Tissue Engineering of Cartilage
,”
Nat. Mater.
,
6
(
2
), pp.
162
167
.
2.
Kellomäki
,
M.
,
Laine
,
K.
,
Ellä
,
V.
, and
Annala
,
T.
,
2015
, “
Bioabsorbable Fabrics for Musculoskeletal Scaffolds
,”
Biomedical Textiles for Orthopaedic and Surgical Applications: Fundamentals, Applications and Tissue Engineering
, Woodhead Publishing, Waltham, MA, pp.
67
90
.
3.
Ahn
,
H.
,
Kim
,
K. J.
,
Park
,
S. Y.
,
Huh
,
J. E.
,
Kim
,
H. J.
, and
Yu
,
W. R.
,
2014
, “
3D Braid Scaffolds for Regeneration of Articular Cartilage
,”
J. Mech. Behav. Biomed. Mater.
,
34
, pp.
37
46
.
4.
Akbari
,
M.
,
Tamayol
,
A.
,
Bagherifard
,
S.
,
Serex
,
L.
,
Mostafalu
,
P.
,
Faramarzi
,
N.
,
Mohammadi
,
M. H.
, and
Khademhosseini
,
A.
,
2016
, “
Textile Technologies and Tissue Engineering: A Path Toward Organ Weaving
,”
Adv. Healthcare Mater.
,
5
(
7
), pp.
751
766
.
5.
Balter
,
M.
,
2009
, “
Clothes Make the (Hu) Man
,”
Science
,
325
(
5946
), pp.
1329
1329
.
6.
Kvavadze
,
E.
,
Bar-Yosef
,
O.
,
Belfer-Cohen
,
A.
,
Boaretto
,
E.
,
Jakeli
,
N.
,
Matskevich
,
Z.
, and
Meshveliani
,
T.
,
2009
, “
30,000-Year-Old Wild Flax Fibers
,”
Science
,
325
(
5946
), pp.
1359
1359
.
7.
Mouritz
,
A. P.
,
Bannister
,
M. K.
,
Falzon
,
P. J.
, and
Leong
,
K. H.
,
1999
, “
Review of Applications for Advanced Three-Dimensional Fibre Textile Composites
,”
Composites, Part A
,
30
(
12
), pp.
1445
1461
.
8.
Zhu
,
B.
,
Yu
,
T.
, and
Tao
,
X.
,
2007
, “
Large Deformation and Slippage Mechanism of Plain Woven Composite in Bias Extension
,”
Composites, Part A
,
38
(
8
), pp.
1821
1828
.
9.
Bolton
,
C. W.
, and
Bruchman
,
W. C.
,
1985
, “
The GORE-TEXTM Expanded Polytetrafluoroethylene Prosthetic Ligament an In Vitro and In Vivo Evaluation
,”
Clin. Orthop. Relat. Res.
,
196
, pp.
202
213
.http://journals.lww.com/corr/Abstract/1985/06000/The_GORE_TEXTM_Expanded_Polytetrafluoroethylene.27.aspx
10.
Bruchman
,
W.
,
Bain
,
J.
, and
Bain
,
J.
,
1988
,
The Crucial Ligaments
,
J.
Feagin
, ed.,
Churchill Livingstone
,
New York
, pp.
507
515
.
11.
Collins
,
H.
,
1988
,
Prosthetic Ligament Reconstruction of the Knee
,
M.
Friedman
, and
R.
Ferkel
, eds.,
W.B. Saunders
,
Philadelphia, PA
.
12.
Fujikawa
,
K.
,
1988
, “
Clinical Study of Anterior Cruciate Ligament Reconstruction With the Leeds-Keio Artificial Ligament
,”
Prosthetic Ligament Reconstruction of the Knee
,
W.B. Saunders
,
Philadelphia, PA
, pp.
132
139
.
13.
Kennedy
,
J. C.
,
1983
, “
Application of Prosthetics to Anterior Cruciate Ligament Reconstruction and Repair
,”
Clin. Orthop. Relat. Res.
,
172
, pp.
125
128
.http://journals.lww.com/corr/Citation/1983/01000/Application_of_Prosthetics_to_Anterior_Cruciate.24.aspx
14.
Kennedy
,
J. C.
,
Roth
,
J.
,
Mendenhall
,
H.
, and
Sanford
,
J.
,
1980
, “
Presidential Address Intraarticular Replacement in the Anterior Cruciate Ligament-Deficient Knee
,”
Am. J. Sports Med.
,
8
(
1
), pp.
1
8
.
15.
McPherson
,
G.
,
Mendenhall
,
H.
,
Gibbons
,
D.
,
Plenk
,
H.
,
Rottmann
,
W.
,
Sanford
,
J.
,
Kennedy
,
J.
, and
Roth
,
J.
,
1985
, “
Experimental Mechanical and Histologic Evaluation of the Kennedy Ligament Augmentation Device
,”
Clin. Orthop. Relat. Res.
,
196
, pp.
186
195
.http://journals.lww.com/corr/Abstract/1985/06000/Experimental_Mechanical_and_Histologic_Evaluation.25.aspx
16.
Seedhom
,
B.
,
1988
,
Prosthetic Ligament Reconstruction of the Knee
,
M.
Friedman
and
M.
Ferkel
, eds.,
W.B. Saunders
,
Philadelphia, PA
.
17.
Schmalzried
,
T. P.
, and
Callaghan
,
J. J.
,
1999
, “
Current Concepts Review-Wear in Total Hip and Knee Replacements
,”
J. Bone Jt. Surg. Am.
,
81
(
1
), pp.
115
136
.
18.
Binnig
,
G.
,
Quate
,
C. F.
, and
Gerber
,
C.
,
1986
, “
Atomic Force Microscope
,”
Phys. Rev. Lett.
,
56
(
9
), pp.
930
933
.
19.
Chilamakuri
,
S.
, and
Bhushan
,
B.
,
1998
, “
Contact Analysis of Non-Gaussian Random Surfaces
,”
Proc. Inst. Mech. Eng., Part J
,
212
(
1
), pp.
19
32
.
20.
Warren
,
O. L.
, and
Wyrobek
,
T. J.
,
2004
, “
Nanomechanical Property Screening of Combinatorial Thin-Film Libraries by Nanoindentation
,”
Meas. Sci. Technol.
,
16
(
1
), pp.
100
110
.
21.
Tabor
,
D.
,
2000
,
The Hardness of Metals
,
Oxford University Press
,
New York
.
22.
Giordano
,
M. A.
, and
Schmid
,
S. R.
,
2010
, “
Application of Contact Mode AFM to Manufacturing Processes
,”
Scanning Probe Microscopy in Nanoscience and Nanotechnology
,
Springer-Verlang
,
Berlin
, pp.
867
914
.
23.
Cleveland
,
J.
,
Manne
,
S.
,
Bocek
,
D.
, and
Hansma
,
P.
,
1993
, “
A Nondestructive Method for Determining the Spring Constant of Cantilevers for Scanning Force Microscopy
,”
Rev. Sci. Instrum.
,
64
(
2
), pp.
403
405
.
24.
Marti
,
O.
,
Colchero
,
J.
, and
Mlynek
,
J.
,
1990
, “
Combined Scanning Force and Friction Microscopy of Mica
,”
Nanotechnology
,
1
(
2
), pp.
141
144
.
25.
Sader
,
J.
,
1998
, “
Frequency Response of Cantilever Beams Immersed in Viscous Fluids With Applications to the Atomic Force Microscope
,”
J. Appl. Phys.
,
84
(
1
), pp.
64
76
.
26.
Sader
,
J. E.
,
1995
, “
Parallel Beam Approximation for V-Shaped Atomic Force Microscope Cantilevers
,”
Rev. Sci. Instrum.
,
66
(
9
), pp.
4583
4587
.
27.
Sader
,
J. E.
,
Chon
,
J. W.
, and
Mulvaney
,
P.
,
1999
, “
Calibration of Rectangular Atomic Force Microscope Cantilevers
,”
Rev. Sci. Instrum.
,
70
(
10
), pp.
3967
3969
.
28.
Senden
,
T.
, and
Ducker
,
W.
,
1994
, “
Experimental Determination of Spring Constants in Atomic Force Microscopy
,”
Langmuir
,
10
(
4
), pp.
1003
1004
.
29.
Hazel
,
J.
, and
Tsukruk
,
V.
,
1998
, “
Friction Force Microscopy Measurements: Normal and Torsional Spring Constants for V-Shaped Cantilevers
,”
ASME J. Tribol.
,
120
(
4
), pp.
814
819
.
30.
Hazel
,
J. L.
, and
Tsukruk
,
V. V.
,
1999
, “
Spring Constants of Composite Ceramic/Gold Cantilevers for Scanning Probe Microscopy
,”
Thin Solid Films
,
339
(
1
), pp.
249
257
.
31.
Neumeister
,
J. M.
, and
Ducker
,
W. A.
,
1994
, “
Lateral, Normal, and Longitudinal Spring Constants of Atomic Force Microscopy Cantilevers
,”
Rev. Sci. Instrum.
,
65
(
8
), pp.
2527
2531
.
32.
Stark
,
R. W.
,
Drobek
,
T.
, and
Heckl
,
W. M.
,
2001
, “
Thermomechanical Noise of a Free v-Shaped Cantilever for Atomic-Force Microscopy
,”
Ultramicroscopy
,
86
(
1
), pp.
207
215
.
33.
Aksu
,
S. B.
, and
Turner
,
J. A.
,
2007
, “
Calibration of Atomic Force Microscope Cantilevers Using Piezolevers
,”
Rev. Sci. Instrum.
,
78
(
4
), p.
043704
.
34.
Butt
,
H. J.
,
Siedle
,
P.
,
Seifert
,
K.
,
Fendler
,
K.
,
Seeger
,
T.
,
Bamberg
,
E.
,
Weisenhorn
,
A.
,
Goldie
,
K.
, and
Engel
,
A.
,
1993
, “
Scan Speed Limit in Atomic Force Microscopy
,”
J. Microsc.
,
169
(
1
), pp.
75
84
.
35.
Cumpson
,
P. J.
,
Zhdan
,
P.
, and
Hedley
,
J.
,
2004
, “
Calibration of AFM Cantilever Stiffness: A Microfabricated Array of Reflective Springs
,”
Ultramicroscopy
,
100
(
3
), pp.
241
251
.
36.
Florin
,
E.
,
Moy
,
V.
, and
Gaub
,
H.
,
1994
, “
Adhesion Forces Between Individual Ligand-Receptor Pairs
,”
Science
,
264
(
5157
), pp.
415
417
.
37.
Gibson
,
C. T.
,
Watson
,
G. S.
, and
Myhra
,
S.
,
1996
, “
Determination of the Spring Constants of Probes for Force Microscopy/Spectroscopy
,”
Nanotechnology
,
7
(
3
), pp.
259
262
.
38.
Holbery
,
J.
,
Eden
,
V.
,
Sarikaya
,
M.
, and
Fisher
,
R.
,
2000
, “
Experimental Determination of Scanning Probe Microscope Cantilever Spring Constants Utilizing a Nanoindentation Apparatus
,”
Rev. Sci. Instrum.
,
71
(
10
), pp.
3769
3776
.
39.
Torii
,
A.
,
Sasaki
,
M.
,
Hane
,
K.
, and
Okuma
,
S.
,
1996
, “
A Method for Determining the Spring Constant of Cantilevers for Atomic Force Microscopy
,”
Meas. Sci. Technol.
,
7
(
2
), pp.
179
184
.
40.
Tortonese
,
M.
, and
Kirk
,
M.
,
1997
, “
Characterization of Application-Specific Probes for SPMs
,”
Proc. SPIE
,
3009
, pp.
53
60
.
41.
Gibson
,
C. T.
,
Weeks
,
B. L.
,
Lee
,
J. R.
,
Abell
,
C.
, and
Rayment
,
T.
,
2001
, “
A Nondestructive Technique for Determining the Spring Constant of Atomic Force Microscope Cantilevers
,”
Rev. Sci. Instrum.
,
72
(
5
), pp.
2340
2343
.
42.
Jing
,
G.
,
Ma
,
J.
, and
Yu
,
D.
,
2007
, “
Calibration of the Spring Constant of AFM Cantilever
,”
J. Electron Microsc.
,
56
(
1
), pp.
21
25
.
43.
Hutter
,
J. L.
, and
Bechhoefer
,
J.
,
1993
, “
Calibration of Atomic-Force Microscope Tips
,”
Rev. Sci. Instrum.
,
64
(
7
), pp.
1868
1873
.
44.
Ruan
,
J.-A.
, and
Bhushan
,
B.
,
1993
, “
Atomic-Scale Friction Measurements Using Friction Force Microscopy—Part I-General Principles and New Measurement Techniques
,”
ASME J. Tribol.
,
116
(2), pp. 378–388.
45.
Burnham
,
N.
,
Chen
,
X.
,
Hodges
,
C.
,
Matei
,
G.
,
Thoreson
,
E.
,
Roberts
,
C.
,
Davies
,
M.
, and
Tendler
,
S.
,
2002
, “
Comparison of Calibration Methods for Atomic-Force Microscopy Cantilevers
,”
Nanotechnology
,
14
(
1
), pp.
1
6
.
46.
Gibson
,
C.
,
Watson
,
G. S.
, and
Myhra
,
S.
,
1997
, “
Scanning Force Microscopy—Calibrative Procedures for ‘Best Practice,’
Scanning
,
19
(
8
), pp.
564
581
.
47.
Gibson
,
C. T.
,
Smith
,
D. A.
, and
Roberts
,
C. J.
,
2005
, “
Calibration of Silicon Atomic Force Microscope Cantilevers
,”
Nanotechnology
,
16
(
2
), pp.
234
238
.
48.
Meyer
,
E.
,
1908
, “
Untersuchungen über Härteprüfung und Härte Brinell Methoden
,”
Z. Ver. Dtsch. Ing.
,
52
, pp.
82
85
.
49.
McHargue
,
C. J.
,
1997
, “
Surface Mechanical Properties Using Nanoindentation
,”
Micro/Nanotribology and Its Applications
,
Springer
, Knoxville, TN, pp.
467
492
.
50.
Devathire
,
M.
,
Delamare
,
F.
, and
Felder
,
E.
,
1984
, “
An Upper Bound Model of Ploughing by a Pyramidal Indenter
,”
Wear
,
66
(1), pp.
51
64
.
51.
Azarkhin
,
A.
, and
Richmond
,
O.
,
1989
, “
A Generalization of the Upper Bound Method With Particular Reference to the Problem of a Ploughing Indenter
,”
ASME J. Appl. Mech.
,
56
(
1
), pp.
10
14
.
52.
Azarkhin
,
A.
, and
Richmond
,
O.
,
1990
, “
On Friction of Ploughing by Rigid Asperities in the Presence of Straining—Upper Bound Method
,”
ASME J. Tribol.
,
112
(
2
), pp.
324
329
.
53.
Azarkhin
,
A.
, and
Richmond
,
O.
,
1991
, “
Extension of the Upper Bound Method to Include Estimation of Stresses
,”
ASME J. Appl. Mech.
,
58
(
2
), pp.
493
499
.
54.
Azarkhin
,
A.
, and
Richmond
,
O.
,
1992
, “
A Model of Ploughing by a Pyramidal Indenter—Upper Bound Method for Stress-Free Surfaces
,”
Wear
,
157
(
2
), pp.
409
418
.
55.
Azarkhin
,
A.
,
Richmond
,
O.
, and
Devenpeck
,
M.
,
1996
, “
An Approximate Model of Surface Ploughing by a Rotating Disc and Other Indenters
,”
Wear
,
192
(
1
), pp.
157
164
.
56.
Azarkhin
,
A.
, and
Devenpeck
,
M.
,
1997
, “
Enhanced Model of a Plowing Asperity
,”
Wear
,
206
(
1
), pp.
147
155
.
57.
Hector
,
L. G.
, and
Schmid
,
S. R.
,
1998
, “
Simulation of Asperity Plowing in an Atomic Force Microscope Part 1: Experimental and Theoretical Methods
,”
Wear
,
215
(
1
), pp.
247
256
.
58.
Koinkar
,
V. N.
, and
Bhushan
,
B.
,
1996
, “
Microtribological Studies of Unlubricated and Lubricated Surfaces Using Atomic Force/Friction Force Microscopy
,”
J. Vac. Sci. Technol., A
,
14
(
4
), pp.
2378
2391
.
59.
Opalka
,
S. M.
,
Hector
,
L. G.
,
Schmid
,
S. R.
,
Reich
,
R. A.
, and
Epp
,
J. M.
,
1999
, “
Boundary Additive Effect on Abrasive Wear During Single Asperity Plowing of a 3004 Aluminum Alloy
,”
ASME J. Tribol.
,
121
(
2
), pp.
384
393
.
60.
Bhushan
,
B.
, and
Koinkar
,
V. N.
,
1994
, “
Nanoindentation Hardness Measurements Using Atomic Force Microscopy
,”
Appl. Phys. Lett.
,
64
(
13
), pp.
1653
1655
.
61.
Bhushan
,
B.
,
1998
,
Handbook of Micro/Nano Tribology
,
CRC Press
,
Boca Raton, FL
.
62.
Frank
,
F.
, and
Singleton
,
R.
,
1964
, “
A Study of Factors Influencing the Tensile Fatigue Behavior of Yarns
,”
Text. Res. J.
,
34
(
1
), pp.
11
19
.
63.
Ukponmwan
,
J. O.
,
1993
, “
Compressibility Analysis of Wet Abraded Woven Fabrics
,”
J. Test. Eval.
,
21
(
4
), pp.
312
321
.
64.
Altaf
,
K.
,
Ashcroft
,
I. A.
, and
Hague
,
R.
,
2012
, “
Modelling the Effect of Moisture on the Depth Sensing Indentation Response of a Stereolithography Polymer
,”
Comput. Mater. Sci.
,
52
(
1
), pp.
112
117
.
65.
Konnerth
,
J.
,
Stöckel
,
F.
,
Müller
,
U.
, and
Gindl
,
W.
,
2010
, “
Elastic Properties of Adhesive Polymers. III. Adhesive Polymer Films Under Dry and Wet Conditions Characterized by Means of Nanoindentation
,”
J. Appl. Polym. Sci.
,
118
(
3
), pp.
1331
1334
.
66.
Laraia
,
K.
,
Leone
,
N.
,
MacDonald
,
R.
, and
Blanchet
,
T. A.
,
2006
, “
Effect of Water and Serum Absorption on Wear of Unirradiated and Crosslinked UHMWPE Orthopedic Bearing Materials
,”
Tribol. Trans.
,
49
(
3
), pp.
338
346
.
67.
Rajeesh
,
K.
,
Gnanamoorthy
,
R.
, and
Velmurugan
,
R.
,
2010
, “
Effect of Humidity on the Indentation Hardness and Flexural Fatigue Behavior of Polyamide 6 Nanocomposite
,”
Mater. Sci. Eng.: A
,
527
(
12
), pp.
2826
2830
.
68.
Shi
,
X.
, and
Croll
,
S. G.
,
2011
, “
Reduced Indentation Recovery Temperature at the Surface of a Crosslinked Epoxy Coating in Humid Conditions
,”
J. Coat. Technol. Res.
,
8
(
4
), pp.
535
539
.
69.
Rubin
,
I. I.
,
1990
,
Handbook of Plastic Materials and Technology
,
Wiley
,
New York
.
70.
Diversified Enterprises
,
2017
, “
AccuDyne Test. Critical Surface Tension Components
,” DIVERSIFIED Enterprises, Claremont, NH, accessed Aug. 30, 2017, https://www.accudynetest.com/polytable_01.html
71.
Young
,
J.
, and
Shane
,
R.
,
1985
,
Materials and Processes, Part B: Processes
,
Marcel Dekker
,
New York
, p.
772
.
72.
Zar
,
J. H.
,
2010
,
Biostatistical Analysis
,
Prentice Hall
,
Englewood Cliffs, NJ
.
73.
Friedrich
,
K.
,
Sue
,
H.
,
Liu
,
P.
, and
Almajid
,
A.
,
2011
, “
Scratch Resistance of High Performance Polymers
,”
Tribol. Int.
,
44
(
9
), pp.
1032
1046
.
74.
Prasad
,
A.
,
Dao
,
M.
, and
Suresh
,
S.
,
2009
, “
Steady-State Frictional Sliding Contact on Surfaces of Plastically Graded Materials
,”
Acta Mater.
,
57
(
2
), pp.
511
524
.
75.
Briscoe
,
B.
,
Fiori
,
L.
, and
Pelillo
,
E.
,
1998
, “
Nano-Indentation of Polymeric Surfaces
,”
J. Phys. D: Appl. Phys.
,
31
(
19
), pp.
2395
2405
.
76.
Wredenberg
,
F.
, and
Larsson
,
P.-L.
,
2007
, “
On the Numerics and Correlation of Scratch Testing
,”
J. Mech. Mater. Struct.
,
2
(
3
), pp.
573
594
.
77.
Xiang
,
C.
,
Sue
,
H. J.
,
Chu
,
J.
, and
Coleman
,
B.
,
2001
, “
Scratch Behavior and Material Property Relationship in Polymers
,”
J. Polym. Sci., Part B: Polym. Phys.
,
39
(
1
), pp.
47
59
.
78.
Schmid
,
S. R.
, and
Hector
,
L. G.
,
1998
, “
Simulation of Asperity Plowing in an Atomic Force Microscope—Part II: Plowing of Aluminum Alloys
,”
Wear
,
215
(
1
), pp.
257
266
.
You do not currently have access to this content.