AA2218–Al2O3(TiO2) composites are synthesized by stirring 2, 5, and 7 wt % of 1:2 mixture of Al2O3:TiO2 powders in molten AA2218 alloy. T61 heat-treated composites characterized for microstructure and hardness. Dry sliding wear tests conducted on pin-on-disk setup at available loads 4.91–13.24 N, sliding speed of 1.26 m/s up to sliding distance of 3770 m. Stir cast AA2218 alloy (unreinforced, 0 wt % composite) wears quickly by adhesion, following Archard's law. Aged alloy exhibits lesser wear rate than unaged (solutionized). Mathematical relationship between wear rate and load proposed for solutionized and peak aged alloy. Volume loss in wear increases linearly with sliding distance but drops with the increase in particle wt % at a given load, attributed to the increase in hardness due to matrix reinforcement. Minimum wear rate is recorded in 5 wt % composite due to increased particles retention, lesser porosity, and uniform particle distribution. In composites, wear phenomenon is complex, combination of adhesive and abrasive wear which includes the effect of shear rate, due to sliding action in composite, and abrasive effect (three body wear) of particles. General mathematical relationship for wear rate of T61 aged composite as a function of particle wt % load is suggested. Fe content on worn surface increases with the increase in particle content and counterface temperature increases with the increase in load. Coefficient of friction decreases with particle addition but increases in 7 wt % composite due to change in microstructure.

References

References
1.
Nithesh
,
R.
,
Radhika
,
N.
, and
Sunder
,
S. S.
,
2017
, “
Mechanical Properties and Adhesive Scuffing Wear Behavior of Stir Cast Cu–Sn–Ni/Si3N4 Composites
,”
ASME J. Tribol.
,
139
(6), p. 061603.
2.
Kök
,
M.
,
2006
, “
Abrasive Wear of Al2O3 Particle Reinforced 2024 Aluminium Alloy Composites Fabricated by Vortex Method
,”
Composites, Part A
,
37
(
3
), pp.
457
464
.
3.
Constantin
,
V.
,
Scheed
,
L.
, and
Masounave
,
J.
,
1999
, “
Sliding Wear of Aluminum-Silicon Carbide Metal Matrix Composites
,”
ASME J. Tribol.
,
121
(
4
), pp.
787
794
.
4.
Aziz
,
M. A.
,
Mahmoud
,
T. S.
,
Zaki
,
Z. I.
, and
Gaafer
,
A. M.
,
2006
, “
Heat Treatment and Wear Characteristics of Al2O3 and TiC Particulate Reinforced AA6063 Al Alloy Hybrid Composites
,”
ASME J. Tribol.
,
128
(
4
), pp.
891
894
.
5.
Mandal
,
A.
,
Murty
,
B. S.
, and
Chakraborty
,
M.
,
2009
, “
Sliding Wear Behaviour of T6 Treated A356-TiB2 In-Situ Composites
,”
Wear
,
266
(
7–8
), pp.
865
872
.
6.
Gautam
,
G.
,
Ghose
,
A. K.
, and
Chakrabarty
,
I.
,
2015
, “
Tensile and Dry Sliding Wear Behavior of In-Situ Al3Zr + Al2O3-Reinforced Aluminum Metal Matrix Composites
,”
Metall. Mater. Trans. A
,
46
(
12
), pp.
5952
5961
.
7.
Hamid
,
A. A.
,
Ghosh
,
P. K.
,
Jain
,
S. C.
, and
Ray
,
S.
,
2008
, “
The Influence of Porosity and Particles Content on Dry Sliding Wear of Cast In Situ Al(Ti)-Al2O3(TiO2) Composite
,”
Wear
,
265
(
1–2
), pp.
14
26
.
8.
Komvopoulos
,
K.
,
Saka
,
N.
, and
Suh
,
N. P.
,
1987
, “
The Role of Hard Layers in Lubricated and Dry Sliding
,”
ASME J. Tribol.
,
109
(
2
), pp.
223
231
.
9.
Lampman
,
S. R.
, and
Zore
,
T. B.
, eds.,
2000
, “
Properties and Selection of Non-Ferrous Alloys and Special Purpose Materials
,”
ASM Handbook
, Vol.
2
,
ASM International
,
Materials Park, OH
, pp. 30, 47,
75
79
.
10.
Singh
,
J.
,
Goel
,
S. K.
,
Mathur
,
V. N. S.
, and
Kapoor
,
M. L.
,
1991
, “
Wear Behavior of Squeeze-Cast Al–Al2O3–MgO Particulate MMCs Under Dry Sliding Conditions
,”
AFS Trans.
,
99
, pp.
815
823
.
11.
Tirth
,
V.
,
Ray
,
S.
, and
Kapoor
,
M. L.
,
2009
, “
Effect of Squeeze Pressure on Aging and Mechanical Properties of AA2218-5 Wt Pct Al2O3 (TiO2) Composites
,”
Metall. Mater. Trans. A
,
40
(5), pp.
1246
1254
.
12.
Lampman
,
S. R.
, and
Zore
,
T. B.
, eds.,
2006
, “
Heat Treating
,”
ASM Handbook
, Vol.
4
,
ASM International
,
Materials Park, OH
, pp.
678
, 845.
13.
Archard
,
J. F.
,
1980
, “
Wear Theory and Mechanisms
,”
Wear Control Hand Book
,
M. B.
Peterson
and
W. O.
Winer
, eds.,
ASME
,
New York
, pp.
35
79
.
14.
Ames
,
W.
, and
Alpas
,
A. T.
,
1995
, “
Wear Mechanism in Hybrid Composites of Graphite-20 Pct SiC in A356 Aluminum Alloy (Al-7 Pct Si-0.3 Pct Mg)
,”
Metall. Mater. Trans. A
,
26A
(1), pp.
85
97
.
15.
Banerji
,
A.
,
Prasad
,
S. V.
,
Surappa
,
M. K.
, and
Rohatagi
,
P. K.
,
1982
, “
Abrasive Wear of Cast Aluminium Alloy-Zircon Particle Composites
,”
Wear
,
82
(
2
), pp.
141
151
.
16.
Ramesh
,
C. S.
,
Seshadri
,
S. K.
, and
Iyer
,
K. J. L.
,
1991
, “
A Survey on Aspects of Wear of Metals
,”
Indian J. Technol.
,
29
, pp.
179
185
.
17.
Yaşar
,
M.
, and
Altunpak
,
Y.
,
2009
, “
The Effect of Aging Heat Treatment on the Sliding Wear Behavior of Cu–Al–Fe Alloys
,”
Mater. Des.
,
30
(
3
), pp.
878
884
.
18.
Al-Jarrah
,
J. A.
,
Ray
,
S.
, and
Ghosh
,
P. K.
,
1998
, “
Solidification Processing of Al–Al2O3 Composite Using Turbine Stirrer
,”
Metall. Mater. Trans. A
,
29
(6), pp.
1711
1718
.
19.
Tyagi
,
R.
,
Nath
,
S. K.
, and
Ray
,
S.
,
2002
, “
Effect of Martensite Content on Friction and Oxidative Behavior of 0.42 Pct Carbon Dual Phase Steel
,”
Metall. Mater. Trans. A
,
33
(11), pp.
3479
3488
.
20.
Yang
,
L. J.
,
2003
, “
Wear Coefficient Equation for Aluminium-Based Matrix Composites Against Steel Disc
,”
Wear
,
255
(
1–6
), pp.
579
592
.
21.
Rosenberger
,
M. R.
,
Forlerer
,
E.
, and
Schvezov
,
C. E.
,
2009
, “
Wear Behavior of AA1060 Reinforced With Alumina Under Different Loads
,”
Wear
,
266
(
1–2
), pp.
356
359
.
22.
Tesfay
,
A. W.
,
Nath
,
S. K.
, and
Ray
,
S.
,
2009
, “
Effect of Transfer Layer on Dry Sliding Wear Behaviour of Cast Al-Based Composites Synthesized by Addition of TiO2 and MoO3
,”
Wear
,
266
(
11–12
), pp.
1082
1090
.
23.
Yang
,
J.
, and
Chung
,
D. D. L.
,
1989
, “
Wear of Bauxite-Particle Reinforced Aluminium Alloy
,”
Wear
,
135
(1), pp.
53
65
.
You do not currently have access to this content.