Effects of flexible body and clearance spherical joint on the dynamic performance of 4-SPS/CU parallel mechanism are analyzed. The flexible moving platform is treated as thin plate based on absolute nodal coordinate formulation (ANCF). In order to formulate the parallel mechanism's constraint equations between the flexible body and the rigid body, the tangent frame is introduced to define the joint coordinate. One of the spherical joints between moving platform and kinematic chains is introduced into clearance. The normal and tangential contact forces are calculated based on Flores contact force model and modified Coulomb friction model. The dynamics model of parallel mechanism with clearance spherical joint and flexible moving platform is formulated based on equation of motion. Simulations show that the dynamic performance of parallel mechanism is not sensitive to the flexible body because of the inherent property of moving platform; however, when the clearance spherical joint is considered into the parallel mechanism with flexible body, the flexible moving platform exhibits cushioning effect to absorb the energy caused by clearance joint.

References

References
1.
Tian
,
Y.
,
Shirinzadeh
,
B.
, and
Zhang
,
D.
,
2010
, “
Design and Dynamics of a 3-DOF Flexure-Based Parallel Mechanism for Micro/Nano Manipulation
,”
Microelectron. Eng.
,
87
(
2
), pp.
230
241
.
2.
Yang
,
C.
,
Huang
,
Q.
,
Jiang
,
H.
,
Peter
,
O. O.
, and
Han
,
J.
,
2010
, “
PD Control With Gravity Compensation for Hydraulic 6-DOF Parallel Manipulator
,”
Mech. Mach. Theory
,
45
(
4
), pp.
666
677
.
3.
Zhang
,
J. Z.
,
Xie
,
X. P.
,
Li
,
C. J.
,
Xin
,
Y. Y.
, and
He
,
Z. M.
,
2013
, “
FEM Based Numerical Simulation of Delta Parallel Mechanism
,”
Adv. Mater. Res.
,
690–693
, pp.
2978
2981
.
4.
Ottoboni
,
A.
,
Parenti-Castelli
,
V.
,
Sancisi
,
N.
,
Belvedere
,
C.
, and
Leardini
,
A.
,
2010
, “
Articular Surface Approximation in Equivalent Spatial Parallel Mechanism Models of the Human Knee Joint: An Experiment-Based Assessment
,”
Proc. Inst. Mech. Eng., Part H
,
224
(
9
), pp.
1121
1132
.
5.
Flores
,
P.
,
Ambrósio
,
J.
,
Claro
,
J. C.
, and
Lankarani
,
H. M.
,
2006
, “
Dynamics of Multibody Systems With Spherical Clearance Joints
,”
ASME J. Comput. Nonlinear Dyn.
,
1
(
3
), pp.
240
247
.
6.
Flores
,
P.
, and
Lankarani
,
H. M.
,
2010
, “
Spatial Rigid-Multibody Systems With Lubricated Spherical Clearance Joints: Modeling and Simulation
,”
Nonlinear Dyn.
,
60
(
1–2
), pp.
99
114
.
7.
Askari
,
E.
,
Flores
,
P.
,
Dabirrahmani
,
D.
, and
Appleyard
,
R.
,
2014
, “
Study of the Friction-Induced Vibration and Contact Mechanics of Artificial Hip Joints
,”
Tribol. Int.
,
70
, pp.
1
10
.
8.
Askari
,
E.
,
Flores
,
P.
,
Dabirrahmani
,
D.
, and
Appleyard
,
R.
,
2014
, “
Nonlinear Vibration and Dynamics of Ceramic on Ceramic Artificial Hip Joints: A Spatial Multibody Modelling
,”
Nonlinear Dyn.
,
76
(
2
), pp.
1365
1377
.
9.
Tian
,
Q.
,
Zhang
,
Y.
,
Chen
,
L.
, and
Flores
,
P.
,
2009
, “
Dynamics of Spatial Flexible Multibody Systems With Clearance and Lubricated Spherical Joints
,”
Comput. Struct.
,
87
(
13–14
), pp.
913
929
.
10.
Tian
,
Q.
,
Lou
,
J.
, and
Mikkola
,
A.
,
2017
, “
A New Elastohydrodynamic Lubricated Spherical Joint Model for Rigid-Flexible Multibody Dynamics
,”
Mech. Mach. Theory
,
107
, pp.
210
228
.
11.
Erkaya
,
S.
,
Doğan
,
S.
, and
Şefkatlıoğlu
,
E.
,
2016
, “
Analysis of the Joint Clearance Effects on a Compliant Spatial Mechanism
,”
Mech. Mach. Theory
,
104
, pp.
255
273
.
12.
Wang
,
G.
,
Liu
,
H.
, and
Deng
,
P.
,
2015
, “
Dynamics Analysis of Spatial Multibody System With Spherical Joint Wear
,”
ASME J. Tribol.
,
137
(2), p.
021605
.
13.
Tannous
,
M.
,
Caro
,
S.
, and
Goldsztejn
,
A.
,
2014
, “
Sensitivity Analysis of Parallel Manipulators Using an Interval Linearization Method
,”
Mech. Mach. Theory
,
71
, pp.
93
114
.
14.
Chaker
,
A.
,
Mlika
,
A.
,
Laribi
,
M. A.
,
Romdhane
,
L.
, and
Zeghloul
,
S.
,
2013
, “
Clearance and Manufacturing Errors' Effects on the Accuracy of the 3-RCC Spherical Parallel Manipulator
,”
Eur. J. Mech. A/Solids
,
37
, pp.
86
95
.
15.
Wu
,
W.
, and
Rao
,
S. S.
,
2004
, “
Interval Approach for the Modeling of Tolerances and Clearances in Mechanism Analysis
,”
ASME J. Mech. Des.
,
126
(
4
), pp.
581
592
.
16.
Frisoli
,
A.
,
Solazzi
,
M.
,
Pellegrinetti
,
D.
, and
Bergamasco
,
M.
,
2011
, “
A New Screw Theory Method for the Estimation of Position Accuracy in Spatial Parallel Manipulators With Revolute Joint Clearances
,”
Mech. Mach. Theory
,
46
(
12
), pp.
1929
1949
.
17.
Farajtabar
,
M.
,
Daniali
,
H. M.
, and
Varedi
,
S. M.
,
2016
, “
Error Compensation for Continuous Path Operation of 3-RRR Planar Parallel Manipulator With Clearance in the Joints
,”
J. Sci. Eng.
,
7
(
1
), pp.
20
33
.
18.
Wang
,
G.
,
Liu
,
H.
,
Deng
,
P.
,
Yin
,
K.
, and
Zhang
,
G.
,
2017
, “
Dynamic Analysis of 4-SPS/CU Parallel Mechanism Considering Three-Dimensional Wear of Spherical Joint With Clearance
,”
ASME J. Tribol.
,
139
(2), p.
021608
.
19.
Lee
,
J. D.
, and
Geng
,
Z.
,
1993
, “
A Dynamic Model of a Flexible Stewart Platform
,”
Comput. Struct.
,
48
(
3
), pp.
367
374
.
20.
Kang
,
B.
, and
Mills
,
J. K.
,
2002
, “
Dynamic Modeling of Structurally-Flexible Planar Parallel Manipulator
,”
Robotica
,
20
(
3
), pp.
329
339
.
21.
Wang
,
X.
, and
Mills
,
J. K.
,
2005
, “
FEM Dynamic Model for Active Vibration Control of Flexible Linkages and Its Application to a Planar Parallel Manipulator
,”
Appl. Acoust.
,
66
(
10
), pp.
1151
1161
.
22.
Zhang
,
X.
,
Mills
,
J. K.
, and
Cleghorn
,
W. L.
,
2007
, “
Dynamic Modeling and Experimental Validation of a 3-PRR Parallel Manipulator With Flexible Intermediate Links
,”
J. Intell. Robot. Syst: Theory Appl.
,
50
(
4
), pp.
323
340
.
23.
Rezaei
,
A.
,
Akbarzadeh
,
A.
, and
Akbarzadeh-T
,
M. R.
,
2012
, “
An Investigation on Stiffness of a 3-PSP Spatial Parallel Mechanism With Flexible Moving Platform Using Invariant Form
,”
Mech. Mach. Theory
,
51
, pp.
195
216
.
24.
Ebrahimi
,
S.
, and
Eshaghiyeh-Firoozabadi
,
A.
,
2016
, “
Dynamic Performance Evaluation of Serial and Parallel RPR Manipulators With Flexible Intermediate Links
,”
Iran. J. Sci. Technol. Trans. Mech. Eng.
,
40
(
3
), pp.
169
180
.
25.
Sharifnia
,
M.
, and
Akbarzadeh
,
A.
,
2016
, “
Approximate Analytical Solution for Vibration of a 3-PRP Planar Parallel Robot With Flexible Moving Platform
,”
Robotica
,
34
(
1
), pp.
71
97
.
26.
Hyldahl
,
P.
,
Mikkola
,
A. M.
,
Balling
,
O.
, and
Sopanen
,
J. T.
,
2014
, “
Behavior of Thin Rectangular ANCF Shell Elements in Various Mesh Configurations
,”
Nonlinear Dyn.
,
78
(
2
), pp.
1277
1291
.
27.
Shabana
,
A. A.
,
2011
,
Computational Continuum Mechanics
,
Cambridge University Press
, New York.
28.
Dufva
,
K.
, and
Shabana
,
A. A.
,
2005
, “
Analysis of Thin Plate Structures Using the Absolute Nodal Coordinate Formulation
,”
Proc. Inst. Mech. Eng., Part K
,
219
(
4
), pp.
345
355
.
29.
Bathe
,
K. J.
,
2006
,
Finite Element Procedures
,
Prentice Hall, Upper Saddle River, NJ
.
30.
Dmitrochenko
,
O. N.
, and
Pogorelov
,
D. Y.
,
2003
, “
Generalization of Plate Finite Elements for Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
,
10
(
1
), pp.
17
43
.
31.
Flores
,
P.
, and
Ambrósio
,
J.
,
2010
, “
On the Contact Detection for Contact-Impact Analysis in Multibody Systems
,”
Multibody Syst. Dyn.
,
24
(
1
), pp.
103
122
.
32.
Machado
,
M.
,
Moreira
,
P.
,
Flores
,
P.
, and
Lankarani
,
H. M.
,
2012
, “
Compliant Contact Force Models in Multibody Dynamics: Evolution of the Hertz Contact Theory
,”
Mech. Mach. Theory
,
53
, pp.
99
121
.
33.
Flores
,
P.
,
Machado
,
M.
,
Silva
,
M. T.
, and
Martins
,
J. M.
,
2011
, “
On the Continuous Contact Force Models for Soft Materials in Multibody Dynamics
,”
Multibody Syst. Dyn.
,
25
(
3
), pp.
357
375
.
34.
Ambrósio
,
J. A. C.
,
2003
, “
Impact of Rigid and Flexible Multibody Systems: Deformation Description and Contact Models
,”
Virtual Nonlinear Multibody Systems
, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp.
57
81
.
35.
Sugiyama
,
H.
,
Escalona
,
J. L.
, and
Shabana
,
A. A.
,
2003
, “
Formulation of Three-Dimensional Joint Constraints Using the Absolute Nodal Coordinates
,”
Nonlinear Dyn.
,
31
(
2
), pp.
167
195
.
You do not currently have access to this content.