The form of the Reynolds-type equation which governs the macroscopic mechanics of hydrodynamic lubrication interfaces with a microscopic texture is well-accepted. The central role of the ratio of the mean film thickness to the texture period in determining the flow factor tensors that appear in this equation had been highlighted in a pioneering theoretical study through a rigorous two-scale derivation (Bayada and Chambat, 1988, “New Models in the Theory of the Hydrodynamic Lubrication of Rough Surfaces,” ASME J. Tribol., 110, pp. 402–407). However, the resulting homogenization theory still remains to be numerically investigated. For this purpose, after a comprehensive review of the literature, three microscopic regimes of lubrication will be outlined, and the transition between these three regimes for different texture types will be extensively demonstrated. In addition to conventional textures, representative re-entrant textures will also be addressed.

References

References
1.
Szeri
,
A. Z.
,
2011
,
Fluid Film Lubrication
,
Cambridge University Press
,
Cambridge, UK
.
2.
Hamrock
,
B.
,
Schmid
,
S.
, and
Jacobson
,
B.
,
2004
,
Fundamentals of Fluid Film Lubrication
,
CRC Press
,
Boca Raton, FL
.
3.
Temizer
,
İ.
, and
Stupkiewicz
,
S.
,
2016
, “
Formulation of the Reynolds Equation on a Time-Dependent Lubrication Surface
,”
Proc. R. Soc. A
,
472
(
2187
), p.
20160032
.
4.
Sanchez-Palencia
,
E.
,
1980
,
Non-Homogeneous Media and Vibration Theory
,
Springer-Verlag
,
Berlin
.
5.
Bayada
,
G.
, and
Chambat
,
M.
,
1986
, “
The Transition Between the Stokes Equations and the Reynolds Equation: A Mathematical Proof
,”
Appl. Math. Optim.
,
14
(
1
), pp.
73
93
.
6.
Hornung
,
U.
, ed.,
1997
,
Homogenization in Porous Media
,
Springer-Verlag
,
New York
.
7.
Bayada
,
G.
, and
Chambat
,
M.
,
1988
, “
New Models in the Theory of the Hydrodynamic Lubrication of Rough Surfaces
,”
ASME J. Tribol.
,
110
(
3
), pp.
402
407
.
8.
Patir
,
N.
, and
Cheng
,
H. S.
,
1978
, “
An Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication
,”
ASME J. Lubr. Technol.
,
100
(
1
), pp.
12
17
.
9.
Bayada
,
G.
, and
Chambat
,
M.
,
1989
, “
Homogenization of the Stokes System in a Thin Film Flow With Rapidly Varying Thickness
,”
Math. Model. Numer. Anal.
,
23
(
2
), pp.
205
234
.
10.
Elrod
,
H. G.
,
1973
, “
Thin Film Lubrication Theory for Newtonian Fluids With Surface Possessing Striated Roughness or Grooving
,”
ASME J. Lubr. Technol.
,
95
(
4
), pp.
484
489
.
11.
Christensen
,
H.
, and
Tonder
,
K.
,
1971
, “
The Hydrodynamic Lubrication of Rough Bearing Surfaces of Finite Width
,”
ASME J. Lubr. Technol.
,
93
(
3
), pp.
324
330
.
12.
Christensen
,
H.
, and
Tonder
,
K.
,
1973
, “
The Hydrodynamic Lubrication of Rough Journal Bearings
,”
ASME J. Lubr. Technol.
,
95
(
2
), pp.
166
172
.
13.
Sun
,
D.-C.
,
1978
, “
On the Effects of Two-Dimensional Reynolds Roughness in Hydrodynamic Lubrication
,”
Proc. R. Soc. London Ser. A
,
364
(
1716
), pp.
89
106
.
14.
Patir
,
N.
, and
Cheng
,
H. S.
,
1979
, “
Application of Average Flow Model to Lubrication Between Rough Sliding Surfaces
,”
ASME J. Lubr. Technol.
,
101
(
2
), pp.
220
230
.
15.
Elrod
,
H. G.
,
1979
, “
A General Theory for Laminar Lubrication With Reynolds Roughness
,”
ASME J. Lubr. Technol.
,
101
(
1
), pp.
8
14
.
16.
Tripp
,
J. H.
,
1983
, “
Surface Roughness Effects in Hydrodynamic Lubrication: The Flow Factor Method
,”
ASME J. Lubr. Technol.
,
105
(
3
), pp.
458
463
.
17.
Prat
,
M.
,
Plouraboué
,
F.
, and
Letalleur
,
N.
,
2002
, “
Averaged Reynolds Equation for Flows Between Rough Surfaces in Sliding Motion
,”
Transport Porous Media
,
48
(
3
), pp.
291
313
.
18.
Bayada
,
G.
,
Ciuperca
,
I.
, and
Jai
,
M.
,
2006
, “
Homogenized Elliptic Equations and Variational Inequalities With Oscillating Parameters. Application to the Study of Thin Flow Behavior With Rough Surfaces
,”
Nonlinear Anal.: Real World Appl.
,
7
(
5
), pp.
950
966
.
19.
Kabacaoğlu
,
G.
, and
Temizer
,
İ.
,
2015
, “
Homogenization of Soft Interfaces in Time-Dependent Hydrodynamic Lubrication
,”
Comput. Mech.
,
56
(
3
), pp.
421
441
.
20.
Chupin
,
L.
, and
Martin
,
S.
,
2010
, “
Rigorous Derivation of the Thin Film Approximation With Roughness-Induced Correctors
,”
SIAM J. Math. Anal.
,
44
(4), pp.
3041
3070
.
21.
Fabricius
,
J.
,
Koroleva
,
Y. O.
,
Tsandzana
,
A.
, and
Wall
,
P.
,
2014
, “
Asymptotic Behavior of Stokes Flow in a Thin Domain With a Moving Rough Boundary
,”
Proc. R. Soc. London Ser. A
,
470
(
2167
), p.
20130735
.
22.
Kamrin
,
K.
,
Bazant
,
M. Z.
, and
Stone
,
H. A.
,
2010
, “
Effective Slip Boundary Conditions for Arbitrary Periodic Surfaces: The Surface Mobility Tensor
,”
J. Fluid Mech.
,
658
, pp.
409
437
.
23.
Guo
,
J.
,
Veran-Tissoires
,
S.
, and
Quintard
,
M.
,
2016
, “
Effective Surface and Boundary Conditions for Heterogeneous Surfaces With Mixed Boundary Conditions
,”
J. Comput. Phys.
,
305
, pp.
942
963
.
24.
Tichy
,
J. A.
, and
Chen
,
S.-H.
, “
Plane Slider Bearing Load Due to Fluid Inertia—Experiment and Theory
,”
ASME J. Tribol.
,
107
(
1
), pp.
32
38
.
25.
Sun
,
D.-C.
, and
Chen
,
K.-K.
,
1977
, “
First Effects of Stokes Roughness on Hydrodynamic Lubrication
,”
ASME J. Lubr. Technol.
,
99
(
1
), pp.
2
9
.
26.
Elrod
,
H. G.
,
1977
, “
A Review of Theories for the Fluid Dynamic Effects of Roughness on Laminar Lubricating Films
,” Lubrication Research Laboratory, Columbia University, Technical Report, Report No. 27.
27.
Mitsuya
,
Y.
, and
Fukui
,
S.
,
1986
, “
Stokes Roughness Effects on Hydrodynamic Lubrication—Part I: Comparison Between Incompressible and Compressible Lubricating Films
,”
ASME J. Tribol.
,
108
(
2
), pp.
151
158
.
28.
Hu
,
J.
, and
Leutheusser
,
H. J.
,
1997
, “
Micro-Inertia Effects in Laminar Thin-Film Flow Past a Sinusoidal Boundary
,”
ASME J. Tribol.
,
119
(
1
), pp.
211
216
.
29.
Mateescu
,
G.
,
Ribbens
,
C. J.
,
Watson
,
L. T.
, and
Wang
,
C.-Y.
,
1999
, “
Effect of a Sawtooth Boundary on Couette Flow
,”
Comput. Fluids
,
28
(
6
), pp.
801
813
.
30.
Arghir
,
M.
,
Roucou
,
N.
,
Helene
,
M.
, and
Frene
,
J.
,
2003
, “
Theoretical Analysis of the Incompressible Laminar Flow in a Macro-Roughness Cell
,”
ASME J. Tribol.
,
125
(
2
), pp.
309
318
.
31.
Song
,
D. J.
,
Seo
,
D. K.
, and
Schultz
,
D. W.
,
2003
, “
A Comparison Study Between Navier–Stokes Equations and Reynolds Equation in Lubrication Flow Regime
,”
KSME Int. J.
,
17
(
4
), pp.
599
605
.
32.
van Odyck
,
D. E. A.
, and
Venner
,
C. H.
,
2003
, “
Stokes Flow in Thin Films
,”
ASME J. Tribol.
,
125
(
1
), pp.
121
134
.
33.
Almqvist
,
T.
, and
Larsson
,
R.
,
2004
, “
Some Remarks on the Validity of Reynolds Equation in the Modeling of Lubricant Film Flows on the Surface Roughness Scale
,”
ASME J. Tribol.
,
126
(
4
), pp.
703
709
.
34.
Sahlin
,
F.
,
Glavatskih
,
S. B.
,
Almqvist
,
T.
, and
Larsson
,
R.
,
2005
, “
Two-Dimensional CFD-Analysis of Micro-Patterned Surfaces in Hydrodynamic Lubrication
,”
ASME J. Tribol.
,
127
(
1
), pp.
96
102
.
35.
Feldman
,
Y.
,
Kligerman
,
Y.
,
Etsion
,
I.
, and
Haber
,
S.
,
2006
, “
The Validity of the Reynolds Equation in Modeling Hydrostatic Effects in Gas Lubricated Textured Parallel Surfaces
,”
ASME J. Tribol.
,
128
(
2
), pp.
345
350
.
36.
Brenner
,
G.
,
Al-Zoubi
,
A.
,
Mukinovic
,
M.
,
Schwarze
,
H.
, and
Swoboda
,
S.
,
2007
, “
Numerical Simulation of Surface Roughness Effects in Laminar Lubrication Using the Lattice-Boltzmann Method
,”
ASME J. Tribol.
,
129
(
3
), pp.
603
610
.
37.
de Kraker
,
A.
,
van Ostayen
,
R. A. J.
,
van Beek
,
A.
, and
Rixen
,
D. J.
,
2007
, “
A Multiscale Method Modeling Surface Texture Effects
,”
ASME J. Tribol.
,
129
(
2
), pp.
221
230
.
38.
Dobrica
,
M. B.
, and
Fillon
,
M.
,
2009
, “
About the Validity of Reynolds Equation and Inertia Effects in Textured Sliders of Infinite Width
,”
Proc. IMechE Part J: J. Eng. Tribol.
,
223
(
1
), pp.
69
78
.
39.
Cupillard
,
S.
,
Glavatskih
,
S.
, and
Cervantes
,
M. J.
,
2010
, “
Inertia Effects in Textured Hdyrodynamic Contacts
,”
Proc. IMechE Part J: J. Eng. Tribol.
,
224
(
8
), pp.
751
756
.
40.
de Kraker
,
A.
,
van Ostayen
,
R. A. J.
, and
Rixen
,
D. J.
,
2010
, “
Development of a Texture Averaged Reynolds Equation
,”
Tribol. Int.
,
43
(
11
), pp.
2100
2109
.
41.
Scaraggi
,
M.
,
2012
, “
Textured Surface Hydrodynamic Lubrication: Discussion
,”
Tribol. Lett.
,
48
(
3
), pp.
375
391
.
42.
Fabricius
,
J.
,
Tsandzana
,
A.
,
Perez-Rafols
,
F.
, and
Wall
,
P.
,
2017
, “
A Comparison of the Roughness Regimes in Hydrodynamic Lubrication
,”
ASME J. Tribol.
,
139
(5), p. 051702.
43.
Waseem
,
A.
,
Temizer
,
İ.
,
Kato
,
J.
, and
Terada
,
K.
,
2016
, “
Homogenization-Based Design of Surface Textures in Hydrodynamic Lubrication
,”
Int. J. Numer. Methods Eng.
,
108
(2), pp. 1427–1450.
44.
Almqvist
,
A.
,
Lukkassen
,
D.
,
Meidell
,
A.
, and
Wall
,
P.
,
2007
, “
New Concepts of Homogenization Applied in Rough Surface Hydrodynamic Lubrication
,”
Int. J. Eng. Sci.
,
45
(
1
), pp.
139
154
.
45.
Torquato
,
S.
,
2002
,
Random Heterogeneous Materials: Microstructure and Macroscopic Properties
,
Springer, Berlin
.
46.
Tuteja
,
A.
,
Choi
,
W.
,
Mabry
,
J. M.
,
McKinley
,
G. H.
, and
Cohen
,
R. E.
,
2008
, “
Robust Omniphobic Surfaces
,”
Proc. Natl. Acad. Sci.
,
105
(
47
), pp.
18200
18205
.
47.
Tuteja
,
A.
,
Choi
,
W.
,
McKinley
,
G. H.
,
Cohen
,
R. E.
, and
Rubner
,
M. F.
,
2008
, “
Design Parameters for Superhydrophobicity and Superoleophobicity
,”
MRS Bull.
,
33
(
08
), pp.
752
758
.
48.
Nosonovsky
,
M.
, and
Bhushan
,
B.
,
2016
, “
Why Re-Entrant Surface Topography is Needed for Robust Oleophobicity
,”
Philos. Trans. R. Soc. A
,
374
(
2073
), p.
20160185
.
49.
Bresch
,
D.
,
Choquet
,
C.
,
Chupin
,
L.
,
Colin
,
T.
, and
Gisclon
,
M.
,
2010
, “
Roughness-Induced Effect at Main Order on the Reynolds Approximation
,”
Multiscale Model. Simul.
,
8
(
3
), pp.
997
1017
.
50.
Stroock
,
A. D.
,
Dertinger
,
S. K.
,
Whitesides
,
G. M.
, and
Ajdari
,
A.
,
2002
, “
Patterning Flows Using Grooved Surfaces
,”
Anal. Chem.
,
74
(
20
), pp.
5306
5312
.
51.
Wrobel
,
L. C.
,
2002
,
The Boundary Element Method
(Applications in Thermo-Fluids and Acoustics), Vol. 1, Wiley, Chichester, UK.
52.
Pozrikidis
,
C.
,
2002
,
A Practical Guide to Boundary Element Methods With the Software Library BEMLIB
,
CRC Press
, Boca Raton, FL.
53.
Pozrikidis
,
C.
,
1992
,
Boundary Integral and Singularity Methods for Linearized Viscous Flow
, Cambridge University Press,
Cambridge, UK
.
You do not currently have access to this content.