SiC–TiB2 (10 wt. %) and SiC–TiB2 (10 wt. %)–TaC (5 wt. %) composites are consolidated using spark plasma sintering (SPS) technique at different sintering temperatures (2000 °C and 2100 °C) for 15 min soaking time under 35 MPa pressure. The effects of sintering temperature on densification and mechanical properties of composites have been investigated in detail. SiC–TiB2 and SiC–TiB2–TaC composites sintered at 2100 °C showed high Vickers hardness value, i.e., 27.20 ± 1.23 GPa and 26.40 ± 0.80 GPa, respectively, under 1 kgf (9.81 N) load. Poor fracture toughness {2.28 MPa(m)1/2 at 1 kgf (9.81 N) load} of monolithic silicon carbide (SiC) sintered at 2100 °C is improved with addition of titanium diboride (TiB2) and tantalum carbide (TaC) as secondary phases. Scratch resistance of SiC–TiB2 and SiC–TiB2–TaC composites show coefficient of friction value below 0.40 and 0.50 under 5 N and 10 N loads, respectively. SiC–TiB2 and SiC–TiB2–TaC composites show constant thermal conductivity response above 810 °C and 603 °C in the range of 48.70–47.15 W/m K and 60.35–60.41 W/m K, respectively.

References

1.
Xuanru
,
R.
,
Hejun
,
L.
,
Qiangang
,
F.
, and
Kezhi
,
L.
,
2014
, “
Ultra-High Temperature Ceramic TaB2–TaC–SiC Coating for Oxidation Protection of SiC-Coated Carbon/Carbon Composites
,”
Ceram. Int.
,
40
(
7
), pp.
9419
9425
.
2.
Zhen-Lin
,
Y.
,
Jia-Hu
,
O.
,
Zhan-Guo
,
L.
, and
Xue-Song
,
L.
,
2010
, “
Wear Mechanisms of TiN–TiB2 Ceramic in Sliding Against Alumina From Room Temperature to 700 °C
,”
Ceram. Int.
,
36
(
7
), pp.
2129
2135
.
3.
Blanc
,
C.
,
Thevenot
,
F.
, and
Treheux
,
D.
,
1999
, “
Wear Resistance of α-SiC–TiB2 Composites Prepared by Reactive Sintering
,”
J. Eur. Ceram. Soc.
,
19
(
5
), pp.
571
579
.
4.
Zhenhua
,
H.
,
Rong
,
T.
,
Hirokazu
,
K.
, and
Takashi
,
G.
,
2013
, “
Synthesis of SiC/SiO2 Core-Shell Powder by Rotary Chemical Vapor Deposition and Its Consolidation by Spark Plasma Sintering
,”
Ceram. Int.
,
39
(
3
), pp.
2605
2610
.
5.
Dusan
,
B.
, and
Vladimir
,
K.
,
2012
, “
Microstructure-Mechanical Properties Relations in SiC–TiB2 Composite
,”
Mater. Chem. Phys.
,
133
(
1
), pp.
197
204
.
6.
Zhao
,
G.
,
Huang
,
C.
,
Liu
,
H.
,
Zou
,
B.
,
Zhu
,
H.
, and
Wang
,
J.
,
2014
, “
A Study on In-Situ Synthesis of TiB2–SiC Ceramic Composites by Reactive Hot Pressing
,”
Ceram. Int.
,
40
(
1
), pp.
2305
2313
.
7.
Murthy
,
T. S. R. C.
,
Basu
,
B.
,
Srivastava
,
A.
,
Balasubramaniam
,
R.
, and
Suri
,
A. K.
,
2006
, “
Tribological Properties of TiB2 and TiB2–MoSi2 Ceramic Composites
,”
J. Eur. Ceram. Soc.
,
26
(
7
), pp.
1293
1300
.
8.
Wani, M. F., Khan, Z. A., and Hadfield, M., 2010, “
Effect of Sintering Additives and Reinforcement on Micro Hardness Values of Si3N4 Ceramics and Composites
,”
J. Adv. Res. Mech. Eng.
,
1
(1) pp. 52–59.https://levilentz.com/work/Classes/MFG/Report/Javier/Effect%20of%20Sintering%20Additives.pdf
9.
Liu
,
L.
,
Ye
,
F.
,
He
,
X.
, and
Zhou
,
Y.
,
2011
, “
Densification Process of TaC/TaB2 Composite in Spark Plasma Sintering
,”
Mater. Chem. Phys.
,
126
(
3
), pp.
459
462
.
10.
Li
,
S.
,
Zhang
,
L.
,
Huang
,
M.
,
Yu
,
Z.
,
Xia
,
H.
,
Feng
,
Z.
, and
Cheng
,
L.
,
2012
, “
In Situ Synthesis and Microstructure Characterization of TiC–TiB2–SiC Ultrafine Composites From Hybrid Precursor
,”
Mater. Chem. Phys.
,
133
(
2–3
), pp.
946
953
.
11.
Cho
,
K.-S.
,
Choi
,
H.-J.
, and
Lee.
,
J.-G.
,
1998
, “
Effects of Additive Amount on Microstructure and Fracture Toughness of SiC–TiB2 composites
,”
Ceram. Int.
,
24
(
4
), pp.
299
305
.
12.
Liu
,
H.
,
Liu
,
L.
,
Ye
,
F.
,
Zhang
,
Z.
, and
Zhou
,
Y.
,
2012
, “
Microstructure and Mechanical Properties of the Spark Plasma Sintered TaC/SiC Composites: Effect of Sintering Temperatures
,”
J. Eur. Ceram. Soc.
,
32
(
13
), pp.
3617
3625
.
13.
Anstis
,
G. R.
,
Chantikul
,
P.
,
Lawn
,
B. R.
, and
Marshall
,
D. B.
,
1981
, “
A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness—I: Direct Crack Measurements
,”
J. Am. Ceram. Soc.
,
64
(
9
), pp.
533
538
.
14.
Ponton
,
C. B.
, and
Rawlings
,
R. D.
,
1989
, “
Vickers Indentation Fracture Toughness Test—Part 1: Review of Literature and Formulation of Standardised Indentation Toughness Equations
,”
Mater. Sci. Technol.
,
5
(
9
), pp.
865
872
.
15.
Ponton
,
C. B.
, and
Rawlings
,
R. D.
,
1989
, “
Vickers Indentation Fracture Toughness Test—Part 2: Application and Critical Evaluation of Standardised Indentation Toughness Equations
,”
Mater. Sci. Technol.
,
5
(
10
), pp.
961
976
.
16.
Ghosh
,
D.
,
Subhash
,
G.
,
Radhakrishnan
,
R.
, and
Sudarshan
,
T. S.
,
2008
, “
Scratch-Induced Microplasticity and Microcracking in Zirconium Diboride-Silicon Carbide Composite
,”
Acta Mater.
,
56
(
13
), pp.
3011
3022
.
17.
Ghosh
,
D.
,
Subhash
,
G.
, and
Bourne
,
G. R.
,
2009
, “
Inelastic Deformation Under Indentation and Scratch Loads
,”
J. Eur. Ceram. Soc.
,
29
(
14
), pp.
3053
3061
.
18.
Archard
,
J. F.
,
1953
, “
Contact and Rubbing of Surfaces
,”
J. Appl. Phys.
,
24
(
8
), pp.
981
988
.
19.
Squire
,
T. H.
, and
Marschall
,
J.
,
2010
, “
Material Property Requirements for Analysis and Design of UHTC Components in Hypersonic Applications
,”
J. Eur. Ceram. Soc.
,
30
(
11
), pp.
2239
2251
.
20.
Yuan
,
H.
,
Li
,
J.
,
Shen
,
Q.
, and
Zhang
,
L.
,
2013
, “
Preparation and Thermal Conductivity Characterization of ZrB2 Porous Ceramics Fabricated by Spark Plasma Sintering
,”
Int. J. Refract. Met. Hard Mater.
,
36
, pp.
225
231
.
You do not currently have access to this content.