This paper deals with the improvement in surface properties and microscratch resistance of graphites by means of an ultrasonic nanocrystalline surface modification (UNSM) technique. The surface roughness and surface hardness of the untreated and UNSM-treated graphites were investigated using an atomic force microscopy (AFM) and a microhardness tester, respectively. The scratch resistance was assessed using a microscratch tester at a progressive load. Moreover, a Raman spectroscopy was employed to characterize the microstructure of graphites before and after UNSM treatment. The scratch test results revealed that the resistance to scratch of both UNSM-treated graphites was found to be better in comparison with the untreated graphites. The increase in scratch resistance of both UNSM-treated graphites may be mainly attributed to the reduced surface roughness and increased surface hardness by UNSM treatment. The graphite produced by Poco exhibited a higher resistance to scratch compared to that of the graphite produced by Mersen. The objective of this study is to extend the service life of three-dimensional (3D) cover glass moldings made of graphite by the application of UNSM treatment through the understanding the effects of surface roughness and surface hardness on the scratch defect generation behavior during glass molding process.

References

References
1.
Dixon
,
J.
,
2014
,
Monitoring With Graphite: Tracking Dynamic Host and Application Metric at Scale
,
O'Reilly Media
, Sebastopol, CA, pp.
86
102
.
2.
Delhaes
,
P.
,
2001
,
Graphite and Precursors, World of Carbon
,
Gordon and Breach Science Publishers
, Amsterdam, The Netherlands, pp.
134
168
.
3.
Muterlle
,
P. V.
,
Cristofolini
,
I.
,
Pilla
,
M.
,
Pahl
,
W.
, and
Molinari
,
A.
,
2011
, “
Surface Durability and Design Criteria for Graphite-Bronze Sintered Composited in Dry Sliding Applications
,”
Mater. Des.
,
32
(
7
), pp.
3756
3764
.
4.
Neighbour
,
G. B.
,
2013
,
Modelling and Measuring Reactor Core Graphite Properties and Performance
,
RSC Publishing
,
Cambridge, UK
, pp.
246
297
.
5.
Wang
,
Q.
,
Gao
,
J.
,
Wang
,
R.
, and
Hua
,
Z.
,
2001
, “
Mechanical and Rheological Properties of HDPE/Graphite Composite With Enhanced Thermal Conductivity
,”
Polym. Compos.
,
22
(
1
), pp.
97
103
.
6.
Zheng
,
W.
,
Lu
,
X.
, and
Wong
,
S. C.
,
2004
, “
Electrical and Mechanical Properties of Expanded Graphite-Reinforced High-Density Polyethylene
,”
J. Appl. Polym. Sci.
,
91
(
5
), pp.
2781
2788
.
7.
Maruyama
,
T.
,
Eto
,
M.
, and
Oku
,
T.
,
1987
, “
Elastic Modulus and Bend Strength of a Nuclear Graphite at High Temperature
,”
Carbon
,
25
(
6
), pp.
723
726
.
8.
Guo
,
F.
,
Tian
,
Y.
,
Liu
,
Y.
, and
Wang
,
Y.
,
2015
, “
Tribological Behaviors of Graphite Sliding Against Cemented Carbide in CaCl2 Solution
,”
Surf. Topogr. Metrol. Prop.
,
3
(
4
), p.
044003
.
9.
Yen
,
B. K.
,
1996
, “
Influence of Water Vapor and Oxygen on the Tribology of Carbon Materials With sp2 Valence Configuration
,”
Wear
,
192
(1–2), pp.
208
215
.
10.
Zhu
,
Z.
,
Bai
,
S.
,
Wu
,
J.
,
Xu
,
L.
,
Li
,
T.
,
Ren
,
Y.
, and
Liu
,
C.
,
2015
, “
Friction and Wear Behavior of Resin/Graphite Composite Under Dry Sliding
,”
J. Mater. Sci. Technol.
,
31
(
3
), pp.
325
330
.
11.
Pina
,
J. C.
,
Shafqat
,
S.
,
Kouznetsova
,
V. G.
,
Hoefnagels
,
J. P. M.
, and
Geers
,
M. G. D.
,
2016
, “
Microstructural Study of the Mechanical Response of Compacted Graphite Iron: An Experimental and Numerical Approach
,”
Mater. Sci. Eng. A
,
658
, pp.
439
449
.
12.
MERSEN Group, 2016, “
Graphite Material Properties
,” MERSEN France Gennevilliers, Lyon, France, accessed May 18, 2017, https://www.mersen.com/uploads/tx_mersen/6-continuous-casting-mersen_04.PDF
13.
POCO Group, 2015, “
Properties and Characteristics of Graphite
,” POCO Graphite Inc., Decatur, TX, accessed May 18, 2017, http://poco.com/Portals/0/Literature/Semiconductor/IND-109441-0115.pdf
14.
Amanov
,
A.
,
Cho
,
I. S.
, and
Pyun
,
Y. S.
,
2016
, “
Microstructural Evolution and Surface Properties of Nanostructured Cu-Based Alloy by Ultrasonic Nanocrystalline Surface Modification
,”
Appl. Surf. Sci.
,
388
(Part A), pp.
185
195
.
15.
Amanov
,
A.
, and
Pyun
,
Y. S.
,
2017
, “
Low Friction and High Strength of 316L Stainless Steel Tubing for Biomedical Applications
,”
Mater. Sci. Eng., C
,
71
, pp.
176
185
.
16.
Dowson
,
D.
,
Priest
,
M.
,
Ehret
,
P.
,
Flamand
,
L.
,
Dalmaz
,
G.
,
Childs
,
T. H. C.
,
Berthier
,
Y.
,
Taylor
,
C. M.
,
Lubrecht
,
A. A.
, and
Georges
,
J. M.
,
1998
,
Lubrication at the Frontier: The Role of the Interface and Surface Layers in the Thin Film and Boundary Regime
,
Elsevier
,
Amsterdam, The Netherlands
, pp.
98
116
.
17.
Stéphanie
,
L. P.
,
Karl
,
D.
,
Jean
,
D.
, and
Marc
,
F.
,
2014
, “
Tribological Characterization of Silicon Carbide and Carbon Materials
,”
J. Eur. Ceram. Soc.
,
35
(
4
), pp.
1147
1159
.
18.
Xiao
,
J. K.
,
Zheng
,
L.
,
Zhou
,
K. C.
, and
Wang
,
X. P.
,
2013
, “
Microscratch Behavior of Copper-Graphite Composites
,”
Tribol. Int.
,
57
, pp.
38
45
.
19.
Kurkcu
,
P.
,
Andena
,
L.
, and
Pavan
,
A.
,
2014
, “
An Experimental Investigation of the Scratch Behavior of Polymers—2: Influence of Hard or Soft Fillers
,”
Wear
,
317
(
1–2
), pp.
277
290
.
20.
Zok
,
F. W.
, and
Levi
,
C. G.
,
2001
, “
Mechanical Properties of Porous–Matrix Ceramic Composites
,”
Adv. Eng. Mater.
,
3
(
1–2
), pp.
15
23
.
21.
Mugica
,
G. W.
,
Tovio
,
D. O.
,
Cuyas
,
J. C.
, and
Gonzalez
,
A. C.
,
2004
, “
Effect of Porosity on the Tensile Properties of Low Ductility Aluminum Alloys
,”
Mater. Res.
,
7
(
2
), pp.
221
229
.
22.
Stromswold
,
E. I.
,
Pratt
,
R. E.
, and
Quesnel
,
D. J.
,
1994
, “
The Effect of Substrate Surface Roughness on the Fracture Toughness of Cu/96.5Sn-3.5Ag Solder Joints
,”
J. Electron. Mater.
,
23
(
10
), pp.
1047
1053
.
23.
Amanov
,
A.
, and
Pyun
,
Y. S.
,
2016
, “
Wear and Adhesive Failure of Al2O3 Powder Coating Sprayed Onto H13 Tool Steel Substrate
,”
J. Mater.
,
68
(
7
), pp.
1793
1800
.
24.
Tunista
,
F.
, and
Koenig
,
J. L.
,
1970
, “
Raman Spectrum of Graphite
,”
J. Phys. Chem.
,
53
(3), pp.
1126
1130
.
25.
Mandal
,
P.
,
Ehiasarian
,
A.
, and
Hovsepian
,
P.
,
2014
, “
Lubricated Sliding Wear Mechanism of Chromium-Doped Graphite-Like Carbon Coating
,”
Tribol. Int.
,
77
, pp.
186
195
.
26.
Amanov
,
A.
, and
Pyun
,
Y. S.
,
2016
, “
Friction Reduction and Wear Resistance Enhancement of SiC and Si3N4 Ceramics Under Dry Conditions
,”
Tribol. Trans.
,
59
(
3
), pp.
491
501
.
27.
Ferrari
,
A. C.
,
2007
, “
Raman Spectroscopy of Graphene and Graphite: Disorder, Electron–Phonon Coupling, Doping and Nonadiabatic Effects
,”
Solid State Commun.
,
143
(
1–2
), pp.
47
57
.
28.
Dubale
,
A. A.
,
Su
,
W. N.
,
Tamirat
,
A. G.
,
Pan
,
C. J.
,
Aragaw
,
B. A.
,
Chen
,
H. M.
,
Chen
,
C. H.
, and
Hwang
,
B. J.
,
2014
, “
Synergetic Effect of Graphene on Cu2O Nanowire Arrays as Highly Efficient Hydrogen Evolution Photocathode in Water Splitting
,”
J. Mater. Chem. A
,
2
(
43
), pp.
18383
18397
.
You do not currently have access to this content.