The dynamic evolutionary law and tribological behavior of tribopair AISI 52100-AISI 1045 were studied via the multifractal method. Friction experiment was performed on a ring-on-disk tribometer under lubrication, and the multifractal detrended fluctuation analysis (MF-DFA) method was adapted to characterize the multifractality of the friction coefficient. The multifractal spectra first exhibited a left-hook, then right-hook, and left-hook, respectively, during the friction stages. The multifractal spectrum width W decreases in running-in friction process, maintains at small values in steady friction process, and increases rapidly in increasing friction process. Corresponding shuffled series was analyzed to distinguish that the multifractality of friction coefficient is due to the long-range correlation of the fluctuations. The results inform quantitative interpretations of friction system's tribological behavior and friction process identification.

References

1.
Xie
,
Y. B.
,
2011
, “
Theory of Tribo-Systems
,”
Tribology—Lubricants and Lubrication
, InTech, Rijeka, Croatia.
2.
Carper
,
H. J. J.
,
Ertas
,
A.
,
Issa
,
J.
, and
Cuvalci
,
O.
,
1992
, “
Effect of Some Material, Manufacturing, and Operating Variables on the Friction Coefficient in OCTG Connections
,”
ASME J. Tribol.
,
114
(
4
), pp.
698
705
.
3.
Menezes
,
P. L.
,
Kishore
, and
Kailas
,
S. V.
,
2008
, “
Influence of Roughness Parameters on Coefficient of Friction Under Lubricated Conditions
,”
Sadhana
,
33
(
3
), pp.
181
190
.
4.
Wan
,
Z.
,
Liu
,
X.
,
Wang
,
H.
,
Shan
,
Y.
, and
He
,
T.
,
2014
, “
Friction Coefficient Model of Friction Pair Composed of Automotive Brake Materials
,”
ASME
Paper No. IMECE2014-37407.
5.
Sahin
,
M.
,
Çetinarslan
,
C. S.
, and
Akata
,
H. E.
,
2007
, “
Effect of Surface Roughness on Friction Coefficients During Upsetting Processes for Different Materials
,”
Mater. Des.
,
28
(
2
), pp.
633
640
.
6.
Menezes
,
P. L.
,
Kishore
, and
Kailas
,
S. V.
,
2006
, “
Influence of Surface Texture on Coefficient of Friction and Transfer Layer Formation During Sliding of Pure Magnesium Pin on 080 M40 (EN8) Steel Plate
,”
Wear
,
261
(
5–6
), pp.
578
591
.
7.
Li
,
D.
,
Gao
,
P.
,
Sun
,
X.
,
Zhang
,
S.
,
Zhou
,
F.
, and
Liu
,
W.
,
2014
, “
The Study of TEMPOs as Additives in Different Lubrication Oils for Steel/Steel Contacts
,”
Tribol. Int.
,
73
(
73
), pp.
83
87
.
8.
Blau
,
P. J.
,
1981
, “
Interpretations of the Friction and Wear Break-In Behavior of Metals in Sliding Contact
,”
Wear
,
71
(
1
), pp.
29
43
.
9.
Blau
,
P. J.
,
1987
, “
A Model for Run-In and Other Transitions in Sliding Friction
,”
ASME J. Tribol.
,
109
(
3
), pp.
537
544
.
10.
Kupková
,
M.
,
Kupka
,
M.
,
Rudnayová
,
E.
, and
Dusza
,
J.
,
2005
, “
On the Use of Fractal Geometry Methods for the Wear Process Characterization
,”
Wear
,
258
(
9
), pp.
1462
1465
.
11.
Fras
,
T.
,
Rusinek
,
A.
,
Pęcherski
,
R. B.
,
Bernier
,
R.
, and
Jankowiak
,
T.
,
2014
, “
Analysis of Friction Influence on Material Deformation Under Biaxial Compression State
,”
Tribol. Int.
,
80
, pp.
14
24
.
12.
Urbakh
,
M.
,
Klafter
,
J.
,
Gourdon
,
D.
, and
Israelachvili
,
J.
,
2004
, “
The Nonlinear Nature of Friction
,”
Nature
,
430
(
6999
), pp.
525
528
.
13.
Zhou
,
Y.
,
Zhu
,
H.
,
Zuo
,
X.
,
Li
,
Y.
, and
Chen
,
N.
,
2015
, “
The Nonlinear Nature of Friction Coefficient in Lubricated Sliding Friction
,”
Tribol. Int.
,
88
, pp.
8
16
.
14.
Chiaia
,
B.
,
2002
, “
On the Sliding Instabilities at Rough Surfaces
,”
J. Mech. Phys. Solids
,
50
(
4
), pp.
895
924
.
15.
Panagouli
,
O. K.
, and
Iordanidou
,
K.
,
2013
, “
Dependence of Friction Coefficient on the Resolution and Fractal Dimension of Metallic Fracture Surfaces
,”
Int. J. Solids Struct.
,
50
(
20–21
), pp.
3106
3118
.
16.
Vitanov
,
N. K.
,
Hoffmann
,
N. P.
, and
Wernitz
,
B.
,
2014
, “
Nonlinear Time Series Analysis of Vibration Data From a Friction Brake: SSA, PCA, and MFDFA
,”
Chaos Solitons Fractals
,
69
(
69
), pp.
90
99
.
17.
Zhu
,
H.
,
Ge
,
S.
,
Cao
,
X.
, and
Tang
,
W.
,
2007
, “
The Changes of Fractal Dimensions of Frictional Signals in the Running-In Wear Process
,”
Wear
,
263
(
7–12
), pp.
1502
1507
.
18.
Zhou
,
Y.
,
Zhu
,
H.
, and
Zuo
,
X.
,
2016
, “
Dynamic Evolutionary Consistency Between Friction Force and Friction Temperature From the Perspective of Morphology and Structure of Phase Trajectory
,”
Tribol. Int.
,
94
, pp.
606
615
.
19.
Li
,
G.
,
Huang
,
Y.
,
Lin
,
Y.
, and
Pan
,
X.
,
2013
, “
Multifractal Analysis of Frictional Vibration in the Running-In Process
,”
Tribol. Trans.
,
56
(
2
), pp.
1721
1740
.
20.
Xiong
,
G.
,
Zhang
,
S.
, and
Liu
,
Q.
,
2012
, “
The Time-Singularity Multifractal Spectrum Distribution
,”
Physica A
,
391
(
20
), pp.
4727
4739
.
21.
Takens
,
F.
,
1981
, “
Detecting Strange Attractors in Turbulence
,”
Dynamical Systems and Turbulence, Warwick 1980
,
Springer
,
Berlin
.
22.
Jackson
,
R. L.
, and
Green
,
I.
,
2001
, “
Study of the Tribological Behavior of a Thrust Washer Bearing
,”
Tribol. Trans.
,
44
(
3
), pp.
504
508
.
23.
Kantelhardt
,
J. W.
,
Zschiegner
,
S. A.
,
Koscielny-Bunde
,
E.
,
Havlin
,
S.
,
Bunde
,
A.
, and
Stanley
,
H. E.
,
2002
, “
Multifractal Detrended Fluctuation Analysis of Nonstationary Time Series
,”
Physica A
,
316
(
1–4
), pp.
87
114
.
24.
Peng
,
C. K.
,
Buldyrev
,
S. V.
,
Havlin
,
S.
,
Simons
,
M.
,
Stanley
,
H. E.
, and
Goldberger
,
A. L.
,
1994
, “
Mosaic Organization of DNA Nucleotides
,”
Phys. Rev. E
,
49
(
2
), pp.
1685
1689
.
25.
Wang
,
F.
,
Liao
,
G. P.
,
Li
,
J. H.
,
Li
,
X. C.
, and
Zhou
,
T. J.
,
2013
, “
Multifractal Detrended Fluctuation Analysis for Clustering Structures of Electricity Price Periods
,”
Physica A
,
392
(
22
), pp.
5723
5734
.
26.
Huang
,
N. E.
,
Shen
,
Z.
,
Long
,
S. R.
,
Wu
,
M. C.
,
Shih
,
H. H.
,
Zheng
,
Q.
, Yen, N. C., Tung, C. C., and Liu, H. H.,
1998
, “
The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis
,”
Proc. R. Soc. A
,
454
(
1971
), pp.
903
995
.
27.
Boudraa
,
A. O.
, and
Cexus
,
J. C.
,
2007
, “
EMD-Based Signal Filtering
,”
IEEE Trans. Instrum. Meas.
,
56
(
6
), pp.
2196
2202
.
28.
Ihlen
,
E. A. F.
,
2012
, “
Introduction to Multifractal Detrended Fluctuation Analysis in Matlab
,”
Front. Physiol.
,
3
(
141
), p.
141
.
29.
Gan
,
X.
, and
Han
,
Z.
,
2012
, “
Two General Models That Generate Long Range Correlation
,”
Physica A
,
391
(
12
), pp.
3477
3483
.
You do not currently have access to this content.