Traction between a thin tensioned tape and a grooved roller could be significantly affected by lubrication effects that stem from the air entrainment into the tape–roller interface. An experimental and theoretical investigation was carried out to investigate the tape contact with a grooved roller. The tape-to-roller spacing was measured in a modified tape drive at various operational speed and tension values. The experiments showed that increasing tape tension and tape speed causes the tape-to-land spacing to increase. This unusual result is shown to be due to the tape bending laterally into the grooves. The effects of air entrainment on tape deflection and contact with a land is modeled by using shell theory, air lubrication, and contact mechanics. A relatively wide range of design parameters (groove width, land width) and device parameters (velocity and tension) were simulated to characterize the traction of a thin tape over a grooved roller. It was shown that air lubrication effects reduce the contact force; however, the underlying effects of tape mechanics are not entirely eliminated. This work shows that in order to characterize the mechanics of thin tape over grooved rollers, the tape deflection in the lateral direction should be included in the analysis.

References

References
1.
Gantz, J.
, and
Reinsel, D.
, 2012, “
The Digital Universe in 2020: Big Data, Bigger Digital Shadows, and Biggest Growth in the Far East
,” IDC-IVIEW, International Data Corporation, Framingham, MA, accesssed June 22, 2017, https://www.emc.com/leadership/digital-universe/2012iview/index.htm
2.
Gantz, J.
, and
Reinsel, D.
, 2010, “
The Digital Universe Decade - Are You Ready?
,” IDC-IVIEW, International Data Corporation, Framingham, MA, accessed June 22, 2017, https://www.emc.com/collateral/analyst-reports/idc-digital-universe-are-you-ready.pdf
3.
Eleftheriou
,
E.
,
Haas
,
R.
,
Jelitto
,
J.
,
Lantz
,
M.
, and
Pozidis, H.
,
2010
, “
Trends in Storage Technologies
,”
IEEE Data Eng. Bull.
,
33
(4), pp.
4
13
.http://sites.computer.org/debull/A10dec/ELE_Bulletin_Dec.pdf
4.
INSIC, 2012, “
International Magnetic Tape Storage Roadmap 2012-2022
,” Information Storage Industry Consortium, San Diego, CA, accessed June 22, 2017, http://www.insic.org/news/2012Roadmap/12index.html
5.
Blok
,
H.
, and
Van Rossum
,
J.
,
1953
, “
The Foil Bearing: A New Departure in Hydrodynamic Lubrication
,”
Lubr. Eng.
,
9
(
6
), pp.
316
320
.
6.
Baumeister
,
H.
,
1963
, “
Nominal Clearance of the Foil Bearing
,”
IBM J. Res. Dev.
,
7
(
2
), pp.
153
154
.
7.
Eshel
,
A.
, and
Elrod
,
H.
,
1965
, “
The Theory of the Infinitely Wide, Perfectly Flexible, Self-Acting Foil Bearing
,”
ASME J. Fluids Eng.
,
87
(
4
), pp.
831
836
.
8.
Eshel
,
A.
, and
Elrod
,
H.
,
1967
, “
Stiffness Effects on the Infinitely Wide Foil Bearing
,”
ASME J. Tribol.
,
89
(
1
), pp.
92
97
.
9.
Eshel
,
A.
,
1968
, “
Compressibility Effects on the Infinitely Wide, Perfectly Flexible Foil Bearing
,”
ASME J. Tribol.
,
90
(
1
), pp.
221
225
.
10.
Eshel
,
A.
,
1970
, “
On Fluid Inertia Effects in Infinitely Wide Foil Bearings
,”
ASME J. Tribol.
,
92
(
3
), pp.
490
493
.
11.
Stahl
,
K. J.
,
White
,
J.
, and
Deckert
,
K. L.
,
1974
, “
Dynamic Response of Self-Acting Foil Bearings
,”
IBM J. Res. Dev.
,
18
(
6
), pp.
513
520
.
12.
Rongen
,
P.
,
1990
, “
On Numerical Solutions of the Instationary 2D Foil Bearing Problem
,” ASLE SP-29, pp.
130
138
.
13.
Lacey
,
C.
, and
Talke
,
F. E.
,
1990
, “
A Tightly Coupled Numerical Foil Bearing Solution
,”
IEEE Trans. Mag.
,
26
(
6
), pp.
3039
3043
.
14.
Müftü
,
S.
, and
Benson
,
R.
,
1996
, “
A Study of Cross-Width Variations in the Two-Dimensional Foil Bearing Problem
,”
ASME J. Tribol.
,
118
(
1
), pp.
407
414
.
15.
Müftü
,
S.
, and
Altan
,
M. C.
,
2000
, “
Mechanics of a Porous Web Moving Over a Cylindrical Guide
,”
ASME J. Tribol.
,
122
(
2
), pp.
418
426
.
16.
Muüftuü
,
S.
, and
Jagodnik
,
J. J.
,
2004
, “
Traction Between a Web and a Smooth Roller
,”
ASME J. Tribol.
,
126
(
1
), pp.
177
184
.
17.
Tran
,
S. B. Q.
,
Yoo
,
Y. H.
,
Ko
,
J. H.
,
Kim
,
J.
,
Byun
,
D.
,
Lee
,
J. W.
,
Byun
,
Y. H.
, and
Shin
,
K. H.
,
2009
, “
Experimental and Numerical Study of Air Entrainment Between Web and Spirally Grooved Roller
,”
ASME J. Tribol.
,
131
(
2
), p.
021502
.
18.
Ducotey
,
K.
, and
Good
,
J.
,
1995
, “
The Importance of Traction in Web Handling
,”
ASME J. Tribol.
,
117
(
4
), pp.
679
684
.
19.
Ducotey
,
K.
, and
Good
,
J.
,
1998
, “
The Effect of Web Permeability and Side Leakage on the Air Film Height Between a Roller and Web
,”
ASME J. Tribol.
,
120
(
3
), pp.
559
565
.
20.
Ducotey
,
K. S.
, and
Good
,
J. K.
,
1999
, “
Predicting Traction in Web Handling
,”
ASME J. Tribol.
,
121
(
3
), pp.
618
624
.
21.
Ducotey
,
K. S.
, and
Good
,
J. K.
,
2000
, “
A Numerical Algorithm for Determining the Traction Between a Web and a Circumferentially Grooved Roller
,”
ASME J. Tribol.
,
122
(
3
), pp.
578
584
.
22.
Granzow
,
G.
, and
Lebeck
,
A.
,
1984
, “
An Improved One-Dimensional Foil Bearing Solution
,” ASLE SP-16, pp.
54
58
.
23.
Hashimoto
,
H.
,
1995
, “
Theoretical Analysis of Externally Pressurized Porous Foil Bearings—Part I: In the Case of Smooth Surface Porous Shaft
,”
ASME J. Tribol.
,
117
(
1
), pp.
103
111
.
24.
Hashimoto
,
H.
,
1999
, “
Air Film Thickness Estimation in Web Handling Processes
,”
ASME J. Tribol.
,
121
(
1
), pp.
50
55
.
25.
Hashimoto
,
H.
, and
Nakagawa
,
H.
,
2001
, “
Improvement of Web Spacing and Friction Characteristics by Two Types of Stationary Guides
,”
ASME J. Tribol.
,
123
(
3
), pp.
509
516
.
26.
Hashimoto
,
H.
, and
Okajima
,
M.
,
2006
, “
Theoretical and Experimental Investigations Into Spacing Characteristics Between Roller and Three Types of Webs With Different Permeabilities
,”
ASME J. Tribol.
,
128
(
2
), pp.
267
274
.
27.
Hashimoto
,
H.
,
Ibi
,
Y.
,
Kiribe
,
S.
, and
Kondou
,
C.
,
2007
, “
Prediction of Slippage Onset Condition Between Web and Steel Roller
,”
Microsyst. Technol.
,
13
(
8–10
), pp.
965
971
.
28.
Hikita, S.
, and
Hashimoto, H.
, 2010, “
Improvement of Slippage and Wrinkling of Transporting Webs Using Micro-Grooved Rollers
,”
J. Adv. Mech. Des. Syst. Manuf.
,
4
(1), pp. 226–237.
29.
Hashimoto
,
H.
,
2012
, “
Friction Characteristics Between Paper and Steel Roller Under Mixed Lubrication
,”
Proc. Inst. Mech. Eng., Part J
,
226
(
12
), pp.
1127
1140
.
30.
Heinrich
,
J.
, and
Wadhwa
,
S.
,
1986
, “
Analysis of Self-Acting Foil Bearings: A Finite Element Approach
,”
Tribol. Mech. Mag. Storage Syst.
, ASLE SP-21, pp.
152
159
.
31.
Lacey
,
C.
, and
Talke
,
F.
,
1992
, “
Measurement and Simulation of Partial Contact at the Head/Tape Interface
,”
ASME J. Tribol.
,
114
(
4
), pp.
646
652
.
32.
Müftü
,
S.
,
2003
, “
Tape Mechanics Over a Flat Recording Head Under Uniform Pull-Down Pressure
,”
Microsyst. Technol.
,
9
(
8
), pp.
546
554
.
33.
Müftü
,
S.
, and
Benson
,
R. C.
,
1995
, “
Modeling the Transport of Paper Webs Including the Paper Permeability Effects
,”
Advances in Information Storage and Processing Systems
, Vol.
1
,
ASME
,
San Francisco, CA
, pp.
247
258
.
34.
Müftü
,
S.
, and
Kaiser
,
D. J.
,
2000
, “
Measurements and Theoretical Predictions of Head/Tape Spacing Over a Flat-Head
,”
Tribol. Int.
,
33
(
5
), pp.
415
430
.
35.
Rice
,
B. S.
,
Cole
,
K. A.
, and
Müftü
,
S.
,
2002
, “
A Model for Determining the Asperity Engagement Height in Relation to Web Traction Over Non-Vented Rollers
,”
ASME J. Tribol.
,
124
(
3
), pp.
584
594
.
36.
Rice
,
B. S.
, and
Gans
,
R. F.
,
2005
, “
Predictive Models of Web-to-Roller Traction
,”
ASME J. Tribol.
,
127
(
1
), pp.
180
189
.
37.
Stewart, A. M.
, and
Cole, K. A.
, 1996, “
Roller With Contoured Surface for Conveying Ultrathin Webs and Apparatus Comprising Such a Roller
,” Eastman Kodak Company, Rochester, NY, Patent No.
EP0820947 A1
.https://encrypted.google.com/patents/EP0820947A1?cl=un
38.
Poorman, P. W.
,
2003
, “
Grooved Tape Guide
,” U.S. Patent No.
US20030029952 A1
.https://www.google.com/patents/US20030029952
39.
Coburn, P. R.
, 2006, “
Tape Drive Transport Roller
,” Storage Technology Corporation, Louisville, CO, U.S. Patent No.
US 6994293 B1
.http://www.google.ch/patents/US6994293
40.
Kaşıkcı
,
T.
, and
Müftü
,
S.
,
2013
, “
Modeling the Traction of a Thin Tape Guided by a Grooved Roller
,”
ASME
Paper No. ISPS2013-2875.
41.
Kaşıkcı
,
T.
,
Weng
,
M.-C.
,
Nayak
,
A.
,
Goker
,
T.
, and
Müftü
,
S.
,
2014
, “
Tape Mechanics Over a Grooved Roller: Experiments and Theory
,”
ASME
Paper No. ISPS2014-6968.
42.
Rice, B. S.
, and
Gans, R. F.
, 2003, “
A Simple Model to Predict Web-to-Roller Clearance
,” Seventh International Web Handling Conference, Stillwater, OK, June 1–4.
43.
Kasikci
,
T.
, and
Müftü
,
S.
,
2015
, “
Wrap Pressure Between a Flexible Web and a Circumferentially Grooved Cylindrical Guide
,”
ASME J. Tribol.
,
138
(
3
), p.
031101
.
44.
Müftü
,
S.
, and
Cole
,
K. A.
,
1999
, “
The Fluid-Structure Interaction in Supporting Thin Flexible Cylindrical Web With an Air Cushion
,”
J. Fluids Struct.
,
13
(
1
), pp.
681
708
.
You do not currently have access to this content.