Aluminum alloy metal matrix composites (Al-MMCs) have been considered as promising materials for aerospace and automotive industries due to their excellent balance of physical, mechanical, and tribological properties. In the present work, the Al–Fe–V–Si alloy matrix composites with 0–20 wt. % copper-coated graphite were fabricated by hot-pressed sintering. The dry sliding tests were carried out at various temperatures ranging from room temperature (RT) to 350 °C. The microstructure, phase, hardness, and worn surface of the sintered composites were examined in detail. The effect of copper-coated graphite amount on the properties of the composite was also investigated. The results show that the Al–Fe–V–Si–graphite composites mainly consist of α-Al, Al8Fe2Si intermetallic, and graphite phases. The addition of Cu-coated graphite can decrease the friction coefficient and wear rate from RT to 350 °C. The Al–Fe–V–Si–graphite composite containing 10 wt. % copper-coated graphite exhibits better wear properties than other composites. The favorable lubricating properties were attributed to the tribolayer with graphite lubricating film formed on the worn surface.

References

References
1.
Miracle
,
D. B.
,
2005
, “
Metal Matrix Composites—From Science to Technological Significance
,”
Compos. Sci. Technol.
,
65
(
15
), pp.
2526
2540
.
2.
Kaushik
,
N. C.
, and
Rao
,
R. N.
,
2017
, “
Influence of Applied Load on Abrasive Wear Depth of Hybrid Gr/SiC/Al-Mg-Si Composites in Two Body Condition
,”
ASME J. Tribol.
,
139
(
6
), p.
061601
.
3.
Iwai
,
Y.
,
Yoneda
,
H.
, and
Honda
,
T.
,
1995
, “
Sliding Wear Behavior of SiC Whisker-Reinforced Aluminum Composite
,”
Wear
,
181
(Pt. 2), pp.
594
602
.
4.
Ahlatci
,
H.
,
Kocer
,
T.
,
Candan
,
E.
, and
Çimenoğlu
,
H.
,
2006
, “
Wear Behaviour of Al/(Al2O3p + SiCp) Hybrid Composites
,”
Tribol. Int.
,
39
(
3
), pp.
213
220
.
5.
Wang
,
Y. Q.
,
Afsar
,
A. M.
,
Jang
,
J. H.
,
Han
,
K. S.
, and
Song
,
J. I.
,
2010
, “
Room Temperature Dry and Lubricant Wear Behaviors of Al2O3f/SiCp/Al Hybrid Metal Matrix Composites
,”
Wear
,
268
(
7
), pp.
863
870
.
6.
Karantzalis
,
A. E.
,
Wyatt
,
S.
, and
Kennedy
,
A. R.
,
1997
, “
The Mechanical Properties of Al-TiC Metal Matrix Composites Fabricated by a Flux-Casting Technique
,”
Mater. Sci. Eng., A
,
237
(
2
), pp.
200
206
.
7.
Kumar
,
S.
,
Chakraborty
,
M.
,
Sarma
,
V. S.
, and
Murty
,
B. S.
,
2008
, “
Tensile and Wear Behaviour of In Situ Al-7Si/TiB2 Particulate Composites
,”
Wear
,
265
(
1
), pp.
134
142
.
8.
Kumar
,
N.
,
Gautam
,
G.
,
Gautam
,
R. K.
,
Mohan
,
A.
, and
Mohan
,
S.
,
2016
, “
High-Temperature Tribology of AA5052/ZrB2 PAMCs
,”
ASME J. Tribol.
,
139
(
1
), p.
011601
.
9.
Toptan
,
F.
,
Kerti
,
I.
, and
Rocha
,
L. A.
,
2012
, “
Reciprocal Dry Sliding Wear Behaviour of B4Cp Reinforced Aluminium Alloy Matrix Composites
,”
Wear
,
290–291
, pp.
74
85
.
10.
Carvalho
,
O.
,
Buciumeanu
,
M.
,
Madeira
,
S.
,
Soares
,
D.
,
Silva
,
F. S.
, and
Miranda
,
G.
,
2015
, “
Dry Sliding Wear Behaviour of AlSi-CNTs-SiCp Hybrid Composites
,”
Tribol. Int.
,
90
, pp.
148
156
.
11.
Fu
,
H. H.
,
Han
,
K. S.
, and
Song
,
J. I.
,
2004
, “
Wear Properties of Saffil/Al, Saffil/Al2O3/Al and Saffil/SiC/Al Hybrid Metal Matrix Composites
,”
Wear
,
256
(
7
), pp.
705
713
.
12.
Pai
,
A.
,
Sharma
,
S. S.
,
D'Silva
,
R. E.
, and
Nikhil
,
R. G.
,
2015
, “
Effect of Graphite and Granite Dust Particulates as Micro-Fillers on Tribological Performance of Al 6061-T6 Hybrid Composites
,”
Tribol. Int.
,
92
, pp.
462
471
.
13.
Prasad
,
S. V.
, and
Asthana
,
R.
,
2004
, “
Aluminum Metal-Matrix Composites for Automotive Applications: Tribological Considerations
,”
Tribol. Lett.
,
17
(
3
), pp.
445
453
.
14.
Kaushik
,
N. C.
, and
Rao
,
R. N.
,
2016
, “
Effect of Grit Size on Two Body Abrasive Wear of Al 6082 Hybrid Composites Produced by Stir Casting Method
,”
Tribol. Int.
,
102
, pp.
52
60
.
15.
Koraman
,
E.
,
Baydoğan
,
M.
,
Sayılgan
,
S.
, and
Kalkanlı
,
A.
,
2015
, “
Dry Sliding Wear Behaviour of Al-Fe-Si-V Alloys at Elevated Temperatures
,”
Wear
,
322–323
, pp.
101
107
.
16.
Skinner
,
D. J.
,
Bye
,
R. L.
,
Raybould
,
D.
, and
Brown
,
A. M.
,
1986
, “
Dispersion Strengthened Al-Fe-V-Si Alloys
,”
Scr. Metall.
,
20
(
6
), pp.
867
872
.
17.
Ashrafi
,
H.
,
Emadi
,
R.
, and
Enayati
,
M. H.
,
2014
, “
Fabrication and Characterization of Nanocrystalline Al/Al12(Fe,V)3Si Alloys by Consolidation of Mechanically Alloyed Powders
,”
Int. J. Miner. Metall. Mater.
,
21
(
7
), pp.
711
719
.
18.
Sahoo
,
K. L.
,
Krishnan
,
C. S. S.
, and
Chakrabarti
,
A. K.
,
2000
, “
Studies on Wear Characteristics of Al-Fe-V-Si Alloys
,”
Wear
,
239
(
2
), pp.
211
218
.
19.
Sahoo
,
K. L.
, and
Das
,
S. K.
,
2003
, “
Effect of Magnesium on Sliding Wear Performance of Cast Al-8.3Fe-0.8V-0.9Si Alloys
,”
Mater. Sci. Technol.
,
19
(
7
), pp.
959
965
.
20.
Yang
,
C. C.
,
Hsu
,
W. M.
, and
Chang
,
E.
,
1997
, “
Wear Performance of AI-Fe-V-Si Particle Reinforced Cast Aluminium Alloy Composites
,”
Mater. Sci. Technol.
,
13
(
8
), pp.
687
694
.
21.
Rajaram
,
G.
,
Kumaran
,
S.
,
Rao
,
T. S.
, and
Kamaraj
,
M.
,
2010
, “
Studies on High Temperature Wear and Its Mechanism of Al-Si/Graphite Composite Under Dry Sliding Conditions
,”
Tribol. Int.
,
43
(
11
), pp.
2152
2158
.
22.
Kaushik
,
N. C.
, and
Rao
,
R. N.
,
2016
, “
The Effect of Wear Parameters and Heat Treatment on Two Body Abrasive Wear of Al-SiC-Gr Hybrid Composites
,”
Tribol. Int.
,
96
, pp.
184
190
.
23.
Kaushik
,
N. C.
, and
Rao
,
R. N.
,
2016
, “
Effect of Applied Load and Grit Size on Wear Coefficients of Al 6082-SiC-Gr Hybrid Composites Under Two Body Abrasion
,”
Tribol. Int.
,
103
, pp.
298
308
.
24.
Hassan
,
A. M.
,
Alrashdan
,
A.
,
Hayajneh
,
M. T.
, and
Mayyas
,
A. T.
,
2009
, “
Prediction of Density, Porosity and Hardness in Aluminum-Copper-Based Composite Materials Using Artificial Neural Network
,”
J. Mater. Process. Technol.
,
209
(
2
), pp.
894
899
.
25.
Lee
,
J. C.
,
Lee
,
S.
,
Lee
,
D. Y.
, and
Kim
,
N. J.
,
1991
, “
On the Embrittlement of a Rapidly Solidified Al-Fe-V-Si Alloy After High-Temperature Exposure
,”
Metall. Mater. Trans. A
,
22
(
4
), pp.
853
858
.
26.
Park
,
W. J.
,
Ahn
,
S.
, and
Kim
,
N. J.
,
1994
, “
Evolution of Microstructure in a Rapidly Solidified Al-Fe-V-Si Alloy
,”
Mater. Sci. Eng., A
,
189
(
1–2
), pp.
291
299
.
27.
Wang
,
F.
,
Zhu
,
B.
,
Xiong
,
B.
,
Zhang
,
Y.
,
Liu
,
H.
, and
Zhang
,
R.
,
2007
, “
An Investigation on the Microstructure and Mechanical Properties of Spray-Deposited Al-8.5Fe-1.1V-1.9Si Alloy
,”
J. Mater. Process. Technol.
,
183
(
2
), pp.
386
389
.
28.
Baradeswaran
,
A.
, and
Perumal
,
A. E.
,
2014
, “
Wear and Mechanical Characteristics of Al 7075/Graphite Composites
,”
Composites, Part B
,
56
, pp.
472
476
.
29.
Mahdavi
,
S.
, and
Akhlaghi
,
F.
,
2011
, “
Effect of the Graphite Content on the Tribological Behavior of Al/Gr and Al/30SiC/Gr Composites Processed by In Situ Powder Metallurgy (IPM) Method
,”
Tribol. Lett.
,
44
(
1
), pp.
1
12
.
30.
Mosleh-Shirazi
,
S.
,
Akhlaghi
,
F.
, and
Li
,
D. Y.
,
2016
, “
Effect of Graphite Content on the Wear Behavior of Al/2SiC/Gr Hybrid Nano-Composites Respectively in the Ambient Environment and an Acidic Solution
,”
Tribol. Int.
,
103
, pp.
620
628
.
31.
Akhlaghi
,
F.
, and
Zare-Bidaki
,
A.
,
2009
, “
Influence of Graphite Content on the Dry Sliding and Oil Impregnated Sliding Wear Behavior of Al 2024-Graphite Composites Produced by In Situ Powder Metallurgy Method
,”
Wear
,
266
(
1
), pp.
37
45
.
32.
Zhan
,
Y.
, and
Zhang
,
G.
,
2006
, “
The Role of Graphite Particles in the High-Temperature Wear of Copper Hybrid Composites Against Steel
,”
Mater. Des.
,
27
(
1
), pp.
79
84
.
33.
Riahi
,
A. R.
, and
Alpas
,
A. T.
,
2001
, “
The Role of Tribo-Layers on the Sliding Wear Behavior of Graphitic Aluminum Matrix Composites
,”
Wear
,
251
(
1
), pp.
1396
1407
.
34.
Kestursatya
,
M.
,
Kim
,
J. K.
, and
Rohatgi
,
P. K.
,
2003
, “
Wear Performance of Copper-Graphite Composite and a Leaded Copper Alloy
,”
Mater. Sci. Eng., A
,
339
(
1
), pp.
150
158
.
35.
Hocheng
,
H.
,
Yen
,
S. B.
,
Ishihara
,
T.
, and
Yen
,
B. K.
,
1997
, “
Fundamental Turning Characteristics of a Tribology-Favored Graphite/Aluminum Alloy Composite Material
,”
Composites, Part A
,
28
(
9
), pp.
883
890
.
You do not currently have access to this content.