This paper mainly reports stability investigations of rotors supported on fluid film journal bearings possessing multilocational slip-no-slip zones at the bush–film interface. The coupled solution of governing equations (Reynolds equation, energy equation, heat diffusion equation, lubricant rheological relation, and thermal boundary conditions) has been used to find pressure distributions in the lubricating film followed by evaluation of bearing coefficients. These coefficients have been used to determine stability limit speed (SLS) of the system and its robustness for both short (nearly inflexible) and long (flexible) rotors. Numerical simulations show that the pattern of pressure distribution with multiple slip-no-slip zones is similar to that obtained for multilobe bearings, resulting in substantial improvement of rotor–bearing stability irrespective of eccentricity ratio. A reduction in friction force (up to Sommerfeld number 1.8) and an increase in SLS and robustness compared to conventional bearings are observed when used with short rotors. Typically, up to six pairs of slip-no-slip zones improve SLS of the rotor–shaft system and robustness for short rotors, although more pairs deteriorate both. However, for long rotors, where dynamic rotor forces also act, these bearings provide marginal improvement in stability and robustness only for a small range of slip length.

References

References
1.
Lee
,
T.
,
Charrault
,
E.
, and
Neto
,
C.
,
2014
, “
Interfacial Slip on Rough, Patterned and Soft Surfaces: A Review of Experiments and Simulations
,”
Adv. Colloid Interface Sci.
,
210
, pp.
21
38
.
2.
Voronov
,
R. S.
,
Papavassiliou
,
D. V.
, and
Lee
,
L. L.
,
2008
, “
Review of Fluid Slip Over Superhydrophobic Surfaces and Its Dependence on the Contact Angle
,”
Ind. Eng. Chem. Res.
,
47
(
8
), pp.
2455
2477
.
3.
Miyazaki
,
S.
,
Koike
,
R.
,
Koyamaishi
,
N.
,
Sanda
,
S.
,
Hotta
,
S.
, and
Hikita
,
Y.
,
2013
, “
Sliding Support Structure for Shaft Member
,” Taiho Kogyo Co., Ltd., Toyota-shi, Japan, U.S. Patent No.
US8556514B2
.
4.
Wu
,
C. W.
, and
Ma
,
G. J.
,
2005
, “
Abnormal Behavior of a Hydrodynamic Lubrication Journal Bearing Caused by Wall Slip
,”
Tribol. Int.
,
38
(
5
), pp.
492
499
.
5.
Ma
,
G. J.
,
Wu
,
C. W.
, and
Zhou
,
P.
,
2007
, “
Wall Slip and Hydrodynamics of Two-Dimensional Journal Bearing
,”
Tribol. Int.
,
40
(
7
), pp.
1056
1066
.
6.
Zhang
,
H.
,
Hua
,
M.
,
Dong
,
G.
,
Zhang
,
D.
, and
Chin
,
K.-S.
,
2014
, “
Boundary Slip Surface Design for High Speed Water Lubricated Journal Bearings
,”
Tribol. Int.
,
79
, pp.
32
41
.
7.
Rao
,
T. V. V. L. N.
,
2010
, “
Analysis of Single-Grooved Slider and Journal Bearing With Partial Slip Surface
,”
ASME J. Tribol.
,
132
(
1
), p. 014501.
8.
Rao
,
T. V. V. L. N.
,
Rani
,
A. M. A.
,
Nagarajan
,
T.
, and
Hashim
,
F. M.
,
2012
, “
Analysis of Slider and Journal Bearing Using Partially Textured Slip Surface
,”
Tribol. Int.
,
56
, pp.
121
128
.
9.
Cupillard
,
S.
,
Glavatskih
,
S.
, and
Cervantes
,
M. J.
,
2008
, “
Computational Fluid Dynamics Analysis of a Journal Bearing With Surface Texturing
,”
Proc. Inst. Mech. Eng. Part J
,
222
(
2
), pp.
97
107
.
10.
Fortier
,
A. E.
, and
Salant
,
R. F.
,
2005
, “
Numerical Analysis of a Journal Bearing With a Heterogeneous Slip/No-Slip Surface
,”
ASME J. Tribol.
,
127
(
4
), pp.
820
825
.
11.
Aurelian
,
F.
,
Patrick
,
M.
, and
Mohamed
,
H.
,
2011
, “
Wall Slip Effects in (Elasto) Hydrodynamic Journal Bearings
,”
Tribol. Int.
,
44
(
7–8
), pp.
868
877
.
12.
Rao
,
T. V. V. L. N.
,
2009
, “
Theoretical Prediction of Journal Bearing Stability Characteristics Based on the Extent of the Slip Region on the Bearing Surface
,”
Tribol. Trans.
,
52
, pp.
37
41
.
13.
Zhang
,
Z. S.
,
Yang
,
Y. M.
,
Dai
,
X. D.
, and
Xie
,
Y. B.
,
2013
, “
Effects of Thermal Boundary Conditions on Plain Journal Bearing Thermohydrodynamic Lubrication
,”
Tribol. Trans.
,
56
(
5
), pp.
759
770
.
14.
Rahmani
,
F.
,
Dutt
,
J. K.
, and
Pandey
,
R. K.
,
2016
, “
Performance Behaviour of Elliptical-Bore Journal Bearings Lubricated With Solid Granular Particulates
,”
Particuology
,
27
, pp.
51
60
.
15.
Friswell
,
M. I.
,
Garvey
,
S. D.
, and
Lees
,
A. W.
,
2010
,
Rotor Dynamics: Modeling and Analysis Modeling and Analysis of Rotating Machines
,
Cambridge University Press
,
Cambridge, UK
.
16.
Chouksey
,
M.
,
Dutt
,
J. K.
, and
Modak
,
S. V.
,
2012
, “
Modal Analysis of Rotor-Shaft System Under the Influence of Rotor-Shaft Material Damping and Fluid Film Forces
,”
Mech. Mach. Theory
,
48
, pp.
81
93
.
You do not currently have access to this content.