The modern technology developments have seeded for the necessity of composite materials that are incorporated with high hardness, high tensile strength, and better wear properties. Cu–Sn–Ni alloy as well as the composites of varying weight percentage of Si3N4 (5, 10, and 15) are fabricated by liquid metallurgy technique. The alloy and composites are tested for their tensile strength and hardness on Universal Testing Machine and Vickers microhardness tester, respectively. Based on the tests, Cu–Sn–Ni/10 wt. % of Si3N4 is found to have optimum mechanical properties. The scuff type adhesive wear behavior is studied through pin-on-disk tribometer under dry sliding conditions for Cu–Sn–Ni/10 wt. % of Si3N4 composite. Taguchi's design of experiments technique based on L27 orthogonal array model is used for analyses of process parameters in three levels such as applied load (10, 20, and 30 N), sliding distance (500, 1000, and 1500 m), and sliding velocity (1, 2, and 3 m/s). The parameters are ranked based on the signal-to-noise ratio and the analysis of variance approach. Based on wear results, applied load is found to have highest stature on influencing wear rate followed by sliding distance and sliding velocity. A generalized wear rate equation is obtained based on the linear regression model and its feasibility is checked. Scanning electron microscope (SEM) analyses revealed severe delamination occurred on maximum load condition. The development of this copper composite can have the possibility of replacing aluminum bearings.

References

References
1.
Milne
,
I.
,
Ritchie
,
R. O.
, and
Karihaloo
,
B. L.
,
2003
,
Comprehensive Structural Integrity: Cyclic Loading and Fatigue
, Vol.
4
,
Elsevier
, Amsterdam, The Netherlands.
2.
Tjong
,
S. C.
, and
Lau
,
K. C.
,
1999
, “
Properties and Abrasive Wear of TiB2/Al-4%Cu Composites Produced by Hot Isostatic Pressing
,”
Compos. Sci. Technol.
,
59
(
13
), pp.
2005
2013
.
3.
Srivatsan
,
T. S.
,
Narendra
,
N.
, and
Troxell
,
J. D.
,
2000
, “
Tensile Deformation and Fracture Behavior of an Oxide Dispersion Strengthened Copper Alloy
,”
Mater. Des.
,
21
(
3
), pp.
191
198
.
4.
Jisa
,
R.
,
Laumann
,
S.
,
Cihak-Bayr
,
U.
,
Tomastik
,
C.
,
Eberle
,
R.
,
Keppeler
,
M.
,
Hofmann
,
U.
, and
Franek
,
F.
,
2014
, “
Tribological Properties of MIM Manufactured Copper Alloys
,”
3rd International Tribology Symposium of the IFToMM—Part I
, Vol.
8
, pp. 27–34.
5.
Kennedy
,
F. E.
,
Balbahadur
,
A. C.
, and
Lashmore
,
D. S.
,
1997
, “
The Friction and Wear of Cu-Based Silicon Carbide Particulate Metal Matrix Composites for Brake Applications
,”
Wear
,
203–204
, pp.
715
721
.
6.
Xia
,
L.
,
Jia
,
B.
,
Zeng
,
J.
, and
Xu
,
J.
,
2008
, “
Wear and Mechanical Properties of Carbon Fiber Reinforced Copper Alloy Composites
,”
Mater. Charact.
,
60
(5), pp.
363
369
.
7.
Akramifard
,
H. R.
,
Shamanian
,
M.
,
Sabbaghian
,
M.
, and
Esmailzadeh
,
M.
,
2014
, “
Microstructure and Mechanical Properties of Cu/SiC Metal Matrix Composite Fabricated Via Friction Stir Processing
,”
Mater. Des.
,
54
, pp.
838
844
.
8.
Avettand-Fènoël
,
M. N.
,
Simar
,
A.
,
Shabadi
,
R.
,
Taillard
,
R.
, and
de Meester
,
B.
,
2014
, “
Characterization of Oxide Dispersion Strengthened Copper Based Materials Developed by Friction Stir Processing
,”
Mater. Des.
,
60
, pp.
343
357
.
9.
Kato
,
H.
,
Takama
,
M.
,
Iwai
,
Y.
,
Washida
,
K.
, and
Sasaki
,
Y.
,
2003
, “
Wear and Mechanical Properties of Sintered Copper–Tin Composites Containing Graphite or Molybdenum Disulfide
,”
Wear
,
255
, pp.
573
578
.
10.
Radhika
,
N.
,
Vaishnavi
,
A.
, and
Chandran
,
G. K.
,
2014
, “
Optimisation of Dry Sliding Wear Process Parameters for Aluminium Hybrid Metal Matrix Composites
,”
Tribol. Ind.
,
36
(2), pp.
188
194
.
11.
Sachdeva
,
A.
,
Narayan
,
R.
, and
Gupta
,
R. D.
,
2013
, “
Evaluation & Comparison of Mechanical Properties of Aluminium Alloy 5052 Reinforced With Silicon Carbide, Graphite and Fly Ash Hybrid Metal Matrix Composites
,”
Int. J. Eng. Sci. Technol.
,
5
(
10
), pp.
1780
1787
.
12.
Radhika
,
N.
, and
Raghu
,
R.
,
2015
, “
Evaluation of Dry Sliding Wear Characteristics of LM 13 Al/B4C Composites
,”
Tribol. Ind.
,
37
, pp.
20
28
.
13.
Hong
,
E.
,
Kaplin
,
B.
,
You
,
T.
,
Suh
,
M.-S.
,
Kim
,
Y.-S.
, and
Choe
,
H.
,
2011
, “
Tribological Properties of Copper Alloy-Based Composites Reinforced With Tungsten Carbide Particles
,”
Wear
,
270
(9–10), pp.
591
597
.
14.
Zhan
,
Y.
, and
Zhang
,
G.
,
2003
, “
The Effect of Interfacial Modifying on the Mechanical and Wear Properties of SiCp/Cu Composites
,”
Mater. Lett.
,
57
(
29
), pp.
4583
4591
.
15.
Taguchi
,
G.
, and
Konishi
,
S.
,
1987
,
Taguchi Methods, Orthogonal Arrays and Linear Graphs
(Tools for Quality Engineering),
American Supplier Institute
,
Dearborn, MI
, pp.
35
38
.
16.
Taguchi
,
G.
,
1993
,
Taguchi on Robust Technology Development Methods
,
ASME Press
,
New York
, pp.
1
40
.
17.
Phillip
,
J. R.
,
1988
,
Taguchi Technique for Quality Engineering
,
McGraw-Hill
,
New York
.
18.
Radhika
,
N.
, and
Subramaniam
,
R.
,
2013
, “
Wear Behaviour of Aluminium/ Alumina/Graphite Hybrid Metal Matrix Composites Using Taguchi's Techniques
,”
Ind. Lubr. Tribol.
,
65
(
3
), pp.
166
174
.
19.
Paulo Davim
,
J.
,
2000
, “
An Experimental Study of Tribological Behaviour of the Brass/Steel Pair
,”
J. Mater. Process. Technol.
,
100
(1–3), pp.
273
279
.
20.
Paulo Davim
,
J.
,
2003
, “
Design of Optimization of Cutting Parameters for Turning Metal Matrix Composites Based on the Orthogonal Arrays
,”
J. Mater. Process. Technol.
,
132
(1–3), pp.
340
344
.
21.
Basavarajappa
,
S.
,
Chandramohan
,
G.
, and
Paulo Davim
,
J.
,
2007
, “
Application of Taguchi Techniques to Study Dry Sliding Wear Behaviour of Metal Matrix Composites
,”
Mater. Des.
,
28
(
4
), pp.
1393
1398
.
22.
Yih
,
P.
, and
Chung
,
D. D. L.
,
1996
, “
Silicon Carbide Whisker Copper Matrix Composites Fabricated by Hot Pressing Copper Coated Whiskers
,”
J. Mater. Sci.
,
31
(
2
), pp.
399
406
.
You do not currently have access to this content.