In the present study, wear resistance composite cladding of Ni-based + 20% WC8Co (wt. %) was developed on SS-304 substrate using domestic microwave oven at 2.45 GHz and 900 W. The clad was developed within 300 s of microwave exposure using microwave hybrid heating (MHH) technique. The clad was characterized through scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), Vicker’s microhardness, and dry sliding wear test. Microstructure study revealed that the clad of approximately 1.25 mm thickness was developed by partial mutual diffusion with substrate. It was observed that the developed clad was free from visible interfacial cracks with significantly less porosity (∼1.2%). XRD patterns of the clad confirmed the presence of Cr23C6, NiSi, and NiCr phases that eventually contributed to the enhancement in clad microhardness. Vicker’s microhardness of the processed clad surface was found to be 840 ± 20 HV, which was four times that of SS-304 substrate. In case of clad surface, wear mainly occurs due to debonding of carbide particles from the matrix, while plastic deformation and strong abrasion are responsible for the removal of material from SS-304 substrate.

References

References
1.
Krishna
,
N. G.
,
Thinaharan
,
C.
,
George
,
R. P.
, and
Mudali
,
K.
,
2015
, “
Surface Modification of Type 304 Stainless Steel With Duplex Coatings for Corrosion Resistance in Sea Water Environments
,”
Surf. Eng.
,
31
(
1
), pp.
39
47
.
2.
Alphonsa
,
I.
,
Chainani
,
A.
,
Raole
,
P. M.
,
Ganguli
,
B.
, and
John
,
P. I.
,
2002
, “
A Study of Martensitic Stainless Steel AISI 420 Modified Using Plasma Nitriding
,”
Surf. Coat. Technol.
,
150
(
2–3
), pp.
263
268
.
3.
Lai
,
F. D.
,
Wu
,
T.
, and
Wu
,
J. K.
,
1993
, “
Surface Modification of Ti-6Al-4V Alloy by Salt Cyaniding and Nitriding
,”
Surf. Coat. Technol.
,
58
(
1
), pp.
79
81
.
4.
Fu
,
P.
,
Jiang
,
C.
,
Wu
,
X.
, and
Zhang
,
Z.
,
2015
, “
Surface Modification of 304 Steel Using Triple-Step Short Peening
,”
Mater. Manuf. Processes
,
30
(
6
), pp.
693
698
.
5.
Amini
,
S.
, and
Kazemiyounm
,
M.
,
2014
, “
Effect of Ultrasonic Vibrations on Chip-Tool Contact Zone in Turning of AISI304
,”
Mater. Manuf. Process.
,
29
(
5
), pp.
627
633
.
6.
Sakasegawa
,
H.
,
Tanigawa
,
H.
, and
Ando
,
M.
,
2014
, “
Corrosion-Resistant Coating Technique for Oxide-Dispersion-Strengthened Ferritic/Martensitic Steel
,”
J. Nucl. Sci. Technol.
,
51
(
6
), pp.
737
743
.
7.
Adachi
,
S.
, and
Ueda
,
N.
,
2013
, “
Surface Hardness Improvement of Plasma-Sprayed AISI 316L Stainless Steel Coating by Low-Temperature Plasma Carburizing
,”
Adv. Powder Technol.
,
24
(
5
), pp.
818
823
.
8.
Sharma
,
A. K.
,
Aravindhan
,
S.
, and
Krishnamurthy
,
R.
,
2001
, “
Microwave Glazing of Alumina–Titania Ceramic Composite Coatings
,”
Mater. Lett.
,
50
(
5–6
), pp.
295
301
.
9.
Sun
,
Y.
, and
Bell
,
T.
,
2002
, “
Dry Sliding Wear Resistance of Low Temperature Plasma Carburised Austenitic Stainless Steel
,”
Wear
,
253
(
5–6
), pp.
689
693
.
10.
Zhou
,
S.
,
Zeng
,
X.
,
Qianwu
,
H.
, and
Huang
,
S.
,
2008
, “
Analysis of Crack Behavior for Ni-Based WC Composite Coatings by Laser Cladding and Crack-Free Realization
,”
Appl. Surf. Sci.
,
255
(
5
), pp.
1646
1653
.
11.
Sharma
,
A. K.
, and
Krishnamurthy
,
R.
,
2002
, “
Microwave Processing of Sprayed Alumina Composite for Enhanced Performance
,”
J. Eur. Ceram. Soc.
,
22
(
16
), pp.
2849
2860
.
12.
Oghbaei
,
M.
, and
Mirzaee
,
O.
,
2010
, “
Microwave Versus Conventional Sintering: A Review of Fundamentals, Advantages and Applications
,”
J. Alloys Compd.
,
494
(
1–2
), pp.
175
189
.
13.
Agrawal
,
D.
,
Cheng
,
J.
, and
Gedevanishvili
,
S.
,
1999
, “
Full Sintering of Powdered-Metal Bodies in a Microwave Field
,”
Nature
,
339
(
6737
), pp.
668
670
.
14.
Chhillar
,
P.
,
Agrawal
,
D.
, and
Adair
,
J. H.
,
2008
, “
Sintering of Molybdenum Metal Powder Using Microwave Energy
,”
Powder Metall.
,
51
(
2
), pp.
182
187
.
15.
Mondal
,
A.
,
Agrawal
,
D.
, and
Upadhyaya
,
A.
,
2009
, “
Microwave Sintering of Refractory Metals/alloys: W, Mo, Re, W-Cu, W-Ni-Cu and W-Ni-Fe Alloys
,”
J. Microwave Power Electromagn. Energy
,
44
(
1
), pp.
28
44
.
16.
Gupta
,
M.
, and
Wong
,
W. L. E.
,
2005
, “
Enhancing Overall Mechanical Performance of Metallic Materials Using Two-Directional Microwave Assisted Rapid Sintering
,”
Scr. Mater.
,
52
(
6
), pp.
479
483
.
17.
Saitou
,
K.
,
2006
, “
Microwave Sintering of Iron, Cobalt, Nickel, Copper and Stainless Steel Powders
,”
Scr. Mater.
,
54
(
5
), pp.
875
879
.
18.
Upadhyaya
,
A.
,
Tiwari
,
S. K.
, and
Mishra
,
P.
,
2007
, “
Microwave Sintering of W–Ni–Fe Alloy
,”
Scr. Mater.
,
56
(
1
), pp.
5
8
.
19.
Gupta
,
D.
, and
Sharma
,
A. K.
,
2010
, “
A Method of Cladding-Coating of Metallic and Non-Metallic Powders on Metallic Substrate by Microwave Irradiation
,” Indian Patent No. 527/Del/2010.
20.
Gupta
,
D.
, and
Sharma
,
A. K.
,
2011
, “
Investigation on Sliding Wear Performance of WC10CO2Ni Cladding Developed Through Microwave Irradiation
,”
Wear
,
271
(
9–10
), pp.
1642
1650
.
21.
Zafar
,
S.
, and
Sharma
,
A. K.
,
2015
, “
On Friction and Wear Behavior of WC-12Co Microwave Clad
,”
Tribol. Trans.
,
58
(
4
), pp.
584
591
.
22.
Zafar
,
S.
,
Bansal
,
A.
,
Sharma
,
A. K.
, and
Ramesh
,
C. S.
,
2014
, “
Dry Erosion Wear Performance of Inconel 718 Microwave Clad
,”
Surf. Eng.
,
30
(
11
), pp.
852
859
.
23.
Gupta
,
D.
, and
Sharma
,
A. K.
,
2011
, “
Development and Microstructural Characterization of Microwave Cladding on Austenitic Stainless Steel
,”
Surf. Coat. Technol.
,
205
(
21–22
), pp.
5147
5155
.
24.
Kaushal
,
S.
,
Sirohi
,
V.
,
Gupta
,
D.
,
Bhowmick
,
H.
, and
Singh
,
S.
,
2015
, “
Processing and Characterization of Composite Cladding Through Microwave Heating on Martensitic Steel
,”
J. Mater.: Des. Appl.
, epub.
25.
Singh
,
S.
,
Gupta
,
D.
,
Jain
,
V.
, and
Sharma
,
A. K.
,
2014
, “
Microwave Processing of Materials and Applications in Manufacturing Industries: A Review
,”
Mater. Manuf. Processes
,
30
(
1
), pp.
1
29
.
26.
Kaushal
,
S.
,
Gupta
,
D.
, and
Bhowmick
,
H. L.
,
2016
, “
Investigation of Dry Sliding Wear Behavior of Composite Cladding Developed Through Microwave Heating
,”
ASME J. Tribol.
,
139
(
4
), p.
041603
.
27.
Yue
,
T. M.
,
Wang
,
A. H.
, and
Man
,
H. C.
,
1999
, “
Corrosion Resistance Enhancement of Magnesium ZK60/SiC Composite by Nd:YAG Laser Cladding
,”
Scr. Mater.
,
40
(
3
), pp.
303
311
.
28.
Ignat
,
S.
,
Sallamand
,
P.
,
Nichici
,
A.
,
Vannes
,
B.
,
Grevey
,
D.
, and
Cicalã
,
E.
,
2003
, “
Mosi2 Laser Cladding Elaboration, Characterisation and Addition of Non-Stabilized ZrO2 Powder Particles
,”
Intermetallics
,
11
(
9
), pp.
931
938
.
29.
Liu
,
X. B.
, and
Yu
,
R. L.
,
2007
, “
Microstructure and High-Temperature Wear and Oxidation Resistance of Laser Clad γ/W2C/TiC Composite Coatings on γ-TiAl Intermetallic Alloy
,”
J. Alloys Compd.
,
439
(
1–2
), pp.
279
286
.
You do not currently have access to this content.