In this paper, a mixed lubrication model is presented to analyze the tribological behavior of the textured journal bearings operating from mixed to hydrodynamic lubrication regimes. In particular, the effects of fluid piezoviscosity and the non-Newtonian fluid behavior are also considered. The presented model solves the hydrodynamic lubrication problem by a mass-conserving formation of the Reynolds equation, whereas the metal–metal contact is considered by using the Greenwood and Tripp (GT) contact model which is linked with the hydrodynamic model based on the concept of Johnson's load sharing. As a result, the performance of the textured journal bearing system under different lubrication regimes, including boundary lubrication regime, mixed hydrodynamic lubrication regime, and hydrodynamic lubrication regime, can be evaluated. Using the journal bearing systems operated under the start-up condition as examples, prediction demonstrates the influences of texture distributions on friction and wear. It is found that the friction reducing effect induced by texturing is influenced by the distribution of the texturing zones. In particular, the hydrodynamic friction can be reduced when the eccentricity ratio is changed from high to low. Moreover, it appears that the shear-thinning effect of lubricant cannot be neglected in the transient analysis of journal bearing system.

References

References
1.
Kuznetsov
,
E.
, and
Glavatskih
,
S.
,
2016
, “
Dynamic Characteristics of Compliant Journal Bearings Considering Thermal Effects
,”
Tribol. Int.
,
94
, pp.
288
305
.
2.
Priest
,
M.
, and
Taylor
,
C.
,
2000
, “
Automobile Engine Tribology—Approaching the Surface
,”
Wear
,
241
(
2
), pp.
193
203
.
3.
Tala-Ighil
,
N.
,
Fillon
,
M.
, and
Maspeyrot
,
P.
,
2011
, “
Effect of Textured Area on the Performances of a Hydrodynamic Journal Bearing
,”
Tribol. Int.
,
44
(
3
), pp.
211
219
.
4.
Tala-Ighil
,
N.
, and
Fillon
,
M.
,
2015
, “
A Numerical Investigation of Both Thermal and Texturing Surface Effects on the Journal Bearings Static Characteristics
,”
Tribol. Int.
,
90
, pp.
228
239
.
5.
Tonder
,
K.
,
2001
, “
Inlet Roughness Tribodevices: Dynamic Coefficients and Leakage
,”
Tribol. Int.
,
34
(
12
), pp.
847
852
.
6.
Tala-Ighil
,
N.
,
Maspeyrot
,
P.
,
Fillon
,
M.
, and
Bounif
,
A.
,
2007
, “
Effects of Surface Texture On Journal-Bearing Characteristics Under Steady-State Operating Conditions
,”
Proc. Inst. Mech. Eng. Part J
,
221
(
J6
), pp.
623
633
.
7.
Cupillard
,
S.
,
Glavatskih
,
S.
, and
Cervantes
,
M. J.
,
2008
, “
Computational Fluid Dynamics Analysis of a Journal Bearing With Surface Texturing
,”
Proc. Inst. Mech. Eng. Part J
,
222
(
J2
), pp.
97
107
.
8.
Brizmer
,
V.
, and
Kligerman
,
Y.
,
2012
, “
A Laser Surface Textured Journal Bearing
,”
ASME J. Tribol.
,
134
(
3
), p.
031702
.
9.
Kango
,
S.
,
Singh
,
D.
, and
Sharma
,
R.
,
2012
, “
Numerical Investigation on the Influence of Surface Texture on the Performance of Hydrodynamic Journal Bearing
,”
Meccanica
,
47
(
2
), pp.
469
482
.
10.
Kango
,
S.
,
Sharma
,
R. K.
, and
Pandey
,
R. K.
,
2014
, “
Comparative Analysis of Textured and Grooved Hydrodynamic Journal Bearing
,”
Proc. Inst. Mech. Eng. Part J
,
228
(
1
), pp.
82
95
.
11.
Kango
,
S.
,
Sharma
,
R. K.
, and
Pandey
,
R. K.
,
2014
, “
Thermal Analysis of Microtextured Journal Bearing Using Non-Newtonian Rheology of Lubricant and JFO Boundary Conditions
,”
Tribol. Int.
,
69
, pp.
19
29
.
12.
Bertocchi
,
L.
,
Dini
,
D.
,
Giacopini
,
M.
,
Fowell
,
M. T.
, and
Baldini
,
A.
,
2013
, “
Fluid Film Lubrication in The Presence of Cavitation: A Mass-Conserving Two-Dimensional Formulation for Compressible, Piezoviscous and Non-Newtonian Fluids
,”
Tribol. Int.
,
67
, pp.
61
71
.
13.
Sahlin
,
F.
,
Glavatskih
,
S. B.
,
Almqvist
,
T.
, and
Larsson
,
R.
,
2005
, “
Two-Dimensional CFD-Analysis of Micro-Patterned Surfaces in Hydrodynamic Lubrication
,”
ASME J. Tribol.
,
127
(
1
), pp.
96
102
.
14.
Hartinger
,
M.
,
Dumont
,
M.-L.
,
Ioannides
,
S.
,
Gosman
,
D.
, and
Spikes
,
H.
,
2008
, “
CFD Modeling of a Thermal and Shear-Thinning Elastohydrodynamic Line Contact
,”
ASME J. Tribol.
,
130
(
4
), p.
041503
.
15.
Nitzschke
,
S.
,
Woschke
,
E.
,
Schmicker
,
D.
, and
Strackeljan
,
J.
,
2016
, “
Regularised Cavitation Algorithm for Use in Transient Rotordynamic Analysis
,”
Int. J. Mech. Sci.
,
113
, pp.
175
183
.
16.
Jakobsson
,
B.
, and
Floberg
,
L.
,
1957
,
The Finite Journal Bearing, Considering Vaporization
,
Gumperts Förlag
,
Göteborg, Sweden
.
17.
Olsson
,
K.-O.
,
1965
,
Cavitation in Dynamically Loaded Bearings
,
Scandinavian University Books
, Akademiförlaget-Gumpert, Sweden.
18.
Patir
,
N.
, and
Cheng
,
H.
,
1979
, “
Application of Average Flow Model to Lubrication Between Rough Sliding Surfaces
,”
ASME J. Tribol.
,
101
(
2
), pp.
220
229
.
19.
Gu
,
C.
,
Meng
,
X.
,
Xie
,
Y.
, and
Zhang
,
D.
,
2016
, “
Mixed Lubrication Problems in the Presence of Textures: An Efficient Solution to the Cavitation Problem With Consideration of Roughness Effects
,”
Tribol. Int.
,
103
, pp.
516
528
.
20.
Patir
,
N.
, and
Cheng
,
H.
,
1978
, “
An Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication
,”
ASME J. Tribol.
,
100
(
1
), pp.
12
17
.
21.
Wu
,
C.
, and
Zheng
,
L.
,
1989
, “
An Average Reynolds Equation for Partial Film Lubrication With a Contact Factor
,”
ASME J. Tribol.
,
111
(
1
), pp.
188
191
.
22.
Woloszynski
,
T.
,
Podsiadlo
,
P.
, and
Stachowiak
,
G. W.
,
2015
, “
Efficient Solution to the Cavitation Problem in Hydrodynamic Lubrication
,”
Tribol. Lett.
,
58
(
1
), pp.
1
11
.
23.
Ausas
,
R. F.
,
Jai
,
M.
, and
Buscaglia
,
G. C.
,
2009
, “
A Mass-Conserving Algorithm for Dynamical Lubrication Problems With Cavitation
,”
ASME J. Tribol.
,
131
(
3
), p.
031702
.
24.
Etsion
,
I.
,
2005
, “
State of the Art in Laser Surface Texturing
,”
ASME J. Tribol.
,
127
(
1
), pp.
248
253
.
25.
Lu
,
X. B.
, and
Khonsari
,
M. M.
,
2007
, “
An Experimental Investigation of Dimple Effect on the Stribeck Curve of Journal Bearings
,”
Tribol. Lett.
,
27
(
2
), pp.
169
176
.
26.
Oliveira
,
J. F. G.
,
Bottene
,
A. C.
, and
Franca
,
T. V.
,
2010
, “
A Novel Dressing Technique for Texturing of Ground Surfaces
,”
CIRP Ann.—Manuf. Technol.
,
59
(
1
), pp.
361
364
.
27.
Sudeep
,
U.
,
Tandon
,
N.
, and
Pandey
,
R. K.
,
2015
, “
Performance of Lubricated Rolling/Sliding Concentrated Contacts With Surface Textures: A Review
,”
ASME J. Tribol.
,
137
(
3
), p.
031501
.
28.
Nanbu
,
T.
,
Ren
,
N.
,
Yasuda
,
Y.
,
Zhu
,
D.
, and
Wang
,
Q. J.
,
2008
, “
Micro-Textures in Concentrated Conformal-Contact Lubrication: Effects of Texture Bottom Shape and Surface Relative Motion
,”
Tribol. Lett.
,
29
(
3
), pp.
241
252
.
29.
Dowson
,
D.
, and
Higginson
,
G. R.
,
1966
,
Elasto-Hydrodynamic Lubrication: The Fundamentals of Roller and Gear Lubrication
,
Pergamon Press
,
Oxford, UK
.
30.
Roelands
,
C. J. A.
,
1966
, “
Correlational Aspects of the Viscosity-Temperature-Pressure Relationship of Lubricating Oils
,” Doctoral thesis,
TU Delft, Delft University of Technology
,
Delft, The Netherlands
.
31.
Frølund
,
K.
,
Schramm
,
J.
,
Tian
,
T.
,
Wong
,
V.
, and
Hochgreb
,
S.
,
2001
, “
Analysis of the Piston Ring/Liner Oil Film Development During Warm-Up for an SI-Engine
,”
ASME J. Eng. Gas Turbines Power
,
123
(
1
), pp.
109
116
.
32.
Gu
,
C.
,
Meng
,
X.
,
Xie
,
Y.
, and
Fan
,
J.
,
2016
, “
A Thermal Mixed Lubrication Model to Study the Textured Ring/Liner Conjunction
,”
Tribol. Int.
,
101
, pp.
178
193
.
33.
Chun
,
S. M.
, and
Khonsari
,
M. M.
,
2016
, “
Wear Simulation for the Journal Bearings Operating Under Aligned Shaft and Steady Load During Start-Up and Coast-Down Conditions
,”
Tribol. Int.
,
97
, pp.
440
466
.
34.
Greenwood
,
J.
, and
Tripp
,
J.
,
1970
, “
The Contact of Two Nominally Flat Rough Surfaces
,”
Proc. Inst. Mech. Eng.
,
185
(
1
), pp.
625
633
.
35.
Arcoumanis
,
C.
,
Ostovar
,
P.
, and
Mortier
,
R.
,
1997
, “
Mixed Lubrication Modelling of Newtonian and Shear Thinning Liquids in a Piston-Ring Configuration
,”
SAE
Technical Paper No. 0148-7191.
36.
Styles
,
G.
,
Rahmani
,
R.
,
Rahnejat
,
H.
, and
Fitzsimons
,
B.
,
2014
, “
In-Cycle and Life-Time Friction Transience in Piston Ring–Liner Conjunction Under Mixed Regime of Lubrication
,”
Int. J. Engine Res.
,
15
(
7
), pp.
862
876
.
37.
Meng
,
X.
,
Gu
,
C.
, and
Xie
,
Y.
,
2016
, “
Elasto-Plastic Contact of Rough Surfaces: A Mixed-Lubrication Model for the Textured Surface Analysis
,”
Meccanica
(Online).
38.
Sander
,
D.
,
Allmaier
,
H.
,
Priebsch
,
H.
,
Witt
,
M.
, and
Skiadas
,
A.
,
2016
, “
Simulation of Journal Bearing Friction In Severe Mixed Lubrication–Validation and Effect of Surface Smoothing Due to Running-In
,”
Tribol. Int.
,
96
, pp.
173
183
.
39.
Xiong
,
S. W.
, and
Wang
,
Q. J.
,
2012
, “
Steady-State Hydrodynamic Lubrication Modeled With the Payvar–Salant Mass Conservation Model
,”
ASME J. Tribol.
,
134
(
3
), p.
031703
.
40.
Gwynllyw
,
D. R.
,
Davies
,
A.
, and
Phillips
,
T.
,
1996
, “
On the Effects of a Piezoviscous Lubricant on the Dynamics of a Journal Bearing
,”
J. Rheol. (1978-present)
,
40
(
6
), pp.
1239
1266
.
41.
Usman
,
A.
, and
Park
,
C. W.
,
2016
, “
Transient Lubrication of Piston Compression Ring During Cold Start-Up of SI Engine
,”
Int. J. Precis. Eng. Manuf.-Green Technol.
,
3
(
1
), pp.
81
90
.
42.
Gulwadi
,
S. D.
,
2000
, “
Analysis of Tribological Performance of a Piston Ring Pack
,”
Tribol. Trans.
,
43
(
2
), pp.
151
162
.
43.
Gu
,
C.
,
Meng
,
X.
,
Xie
,
Y.
, and
Yang
,
Y.
,
2016
, “
Effects of Surface Texturing on Ring/Liner Friction Under Starved Lubrication
,”
Tribol. Int.
,
94
, pp.
591
605
.
44.
Gu
,
C.
,
Meng
,
X.
,
Xie
,
Y.
, and
Kong
,
X.
,
2017
, “
Performance of Surface Texturing During Start Up Under Starved and Mixed Lubrication
,”
ASME J. Tribol.
,
139
(
1
), p.
011702
.
You do not currently have access to this content.