The effect of bifilm oxides on the dry sliding wear behavior of Fe-rich (1.5 wt.%) F332 Al–Si alloy under as-cast and T6 heat-treated conditions was investigated. Toward this end, the surface oxides were intentionally incorporated into the molten alloy by surface agitation. The results showed that, after sliding under the applied load of 75 N, due to the presence of bifilms, the wear rate of base (0.2 wt.% Fe) and 1.5 wt.% Fe-containing alloys increased by almost 22% and 14%, respectively. The results also indicated that, despite the positive effect on the hardness, T6 heat treatment adversely affected the wear resistance of alloys made under surface turbulence condition. This negative effect can be attributed to the expansion of bifilms which, during heat treatment, are converted to the potential sites for initiation and propagation of subsurface microcracks. However, the strengthening effect exerted by the thermally modified β-Al5FeSi platelets showed that it can compensate the negative effects of bifilm oxides because it improves the wear rate of 1.5 wt.% Fe-containing F332-T6 alloy by about 5% under the applied load of 75 N.

References

References
1.
Campbell
,
J.
,
2006
, “
An Overview of the Effect of Bifilms on the Structure and Properties of Cast Alloys
,”
Metall. Mater. Trans. B
,
37
(6), pp.
857
863
.
2.
Campbell
,
J.
,
2006
, “
Entrainment Defects
,”
Mater. Sci. Technol.
,
22
(
2
), pp.
127
145
.
3.
Campbell
,
J.
,
2003
, “
Entrainment
,”
Castings: The New Metallurgy of Cast Metals
,
Butterworth-Heinemann
,
Burlington, VT
.
4.
Campbell
,
J.
,
1993
, “
Invisible Macro-Defects in Castings
,”
J. Phys. IV France
,
3
(
C7
), pp.
861
872
.
5.
Bozchaloei
,
G. E.
,
Varahram
,
N.
,
Davami
,
P.
, and
Kim
,
S. K.
,
2012
, “
Effect of Oxide Bifilms on the Mechanical Properties of Cast Al–7Si–0.3Mg Alloy and the Roll of Runner Height After Filter on Their Formation
,”
Mater. Sci. Eng., A
,
548
, pp.
99
105
.
6.
Simge
,
G. I.
, and
Nursen
,
S.
,
2014
, “
Effect of Fe-Rich Intermetallics on the Microstructure and Mechanical Properties of Thixoformed A380 Aluminum Alloy
,”
Eng. Sci. Technol. Int. J.
,
17
(
2
), pp.
58
62
.
7.
Mahta
,
M.
,
Emamy
,
M.
,
Cao
,
X.
, and
Campbell
,
J.
,
2007
, “
Overview of β-Al5FeSi Phase in Al–Si Alloy
,”
Material Science Research Trends
,
V.
Lawrence
and
N. Y.
Olivante
, eds.,
Nova Science Publishers
,
New York
, pp.
1
16
.
8.
El-Sayed
,
M. A.
, and
Griffiths
,
W. D.
,
2014
, “
Hydrogen, Bifilms and Mechanical Properties of Al Castings
,”
Int. J. Cast Met. Res.
,
27
(
5
), pp.
282
287
.
9.
Dispinar
,
D.
, and
Campbell
,
J.
,
2011
, “
Porosity, Hydrogen and Bifilm Content in Al Alloy Castings
,”
Mater. Sci. Eng., A
,
528
(
10–11
), pp.
3860
3865
.
10.
Gopalan
,
R.
, and
Prabhu
,
N. K.
,
2011
, “
Oxide Bifilms in Aluminium Alloy Castings-A Review
,”
Mat. Sci. Techol.
,
27
(
12
), pp.
1757
1769
.
11.
Miller
,
D. N.
,
Lu
,
L.
, and
Dahle
,
A. K.
,
2006
, “
The Role of Oxides in the Formation of Primary Iron Intermetallics in an Al-11.6Si-0.37Mg Alloy
,”
Metall. Mater. Trans. B
,
37
(
6
), pp.
873
878
.
12.
Olivante
,
L. V.
,
2008
,
Materials Science Research Trends
,
Nova Science Publishers
,
New York
.
13.
Lu
,
L.
, and
Dahle
,
A. K.
,
2005
, “
Iron-Rich Intermetallic Phases and Their Role in Casting Defect Formation in Hypoeutectic Al–Si Alloys
,”
Metall. Mater. Trans. A
,
36
(13), pp.
819
835
.
14.
Belov
,
N. A.
,
Aksenov
,
A. A.
, and
Eskin
,
D. G.
,
2002
,
Iron in Aluminium Alloys: Impurity and Alloying Element
,
Taylor and Francis
,
New York
.
15.
Mbuya
,
T. O.
,
Odera
,
B. O.
, and
Ng'ang'a
,
S. P.
,
2003
, “
Influence of Iron on Castability and Properties of Aluminium Silicon Alloys: Literature Review
,”
Int. J. Cast Met. Res.
,
16
(
5
), pp.
451
465
.
16.
Murali
,
S.
,
Raman
,
K. S.
, and
Murthy
,
S. S.
,
1994
, “
Effect of Trace Additions (Be, Cr, Mn and Co) on the Mechanical Properties and Fracture Toughness of Fe-Containing Al-7Si-0.3Mg Alloy
,”
Cast Met.
,
6
(
4
), pp.
189
199
.
17.
Tyagi
,
R.
, and
Davim
,
J. P.
,
2015
,
Processing Techniques and Tribological Behavior of Composite Materials
, R. Tyagi and J. P. Davim, eds., IGI Global, Hershey, PA.
18.
Rigney
,
D. A.
,
1988
, “
Sliding Wear of Metals
,”
Annu. Rev. Mater. Sci.
,
18
(
1
), pp.
141
163
.
19.
Taghiabadi
,
R.
,
Ghasemi
,
H. M.
, and
Shabestari
,
S. G.
,
2008
, “
Effect of Iron-Rich Intermetallics on the Sliding Wear Behavior of Al–Si Alloys
,”
Mater. Sci. Eng., A
,
490
(1–2), pp.
162
170
.
20.
Taghiabadi
,
R.
, and
Ghasemi
,
H. M.
,
2009
, “
Dry Sliding Wear Behavior of Hypoeutectic Al–Si Alloys Containing Excess Iron
,”
Mater. Sci. Technol.
,
25
(
8
), pp.
1017
1022
.
21.
Puncreobutr
,
C.
,
Lee
,
P. D.
,
Kareh
,
K. M.
,
Connolley
,
T.
,
Fife
,
J. L.
, and
Phillion
,
A. B.
,
2014
, “
Influence of Fe-Rich Intermetallics on Solidification Defects in Al–Si–Cu Alloys
,”
Acta Mater.
,
68
(
15
), pp.
42
51
.
22.
Lu
,
L.
, and
Dahle
,
A. K.
,
2005
, “
Iron-Rich Intermetallic Phases and Their Role in Casting Defect Formation in Hypoeutectic Al−Si Alloys
,”
Metall. Mater. Trans. A
,
36
(3), pp.
819
835
.
23.
Dinnis
,
C. M.
,
Taylor
,
A.
, and
Dahle
,
A. K.
,
2006
, “
Iron-Related Porosity in Al–Si–(Cu) Foundry Alloys
,”
Mater. Sci. Eng.
,
425
(1–2), pp.
286
296
.
24.
Taylor
,
J. A.
,
Schaffer
,
G. B.
, and
StJohn
,
D. H.
,
1999
, “
The Role of Iron in the Formation of Porosity in Al–Si–Cu-Based Casting Alloys—Part III: A Microstructural Model
,”
Metall. Mater. Trans. A
,
30
(6), pp.
1651
1655
.
25.
Roy
,
N.
,
Samuel
,
A. M.
, and
Samuel
,
F. H.
,
1996
, “
Porosity Formation in Al-9Si-3Cu Alloy Systems: Metallographic Observations
,”
Metall. Mater. Trans. A
,
27
(
2
), pp.
415
429
.
26.
Abouei
,
V.
,
Shabestari
,
S. G.
, and
Saghafian
,
H.
,
2010
, “
Dry Sliding Wear Behavior of Hypereutectic Al–Si Piston Alloys Containing Iron-Rich Intermetallics
,”
Mater. Charact.
,
61
(
11
), pp.
1089
1096
.
27.
Abouei
,
V.
,
Shabestari
,
S. G.
,
Saghafian
,
H.
, and
Zarghami
,
H. M.
,
2010
, “
Effect of Fe-Rich Intermetallics on the Wear Behavior of Eutectic Al–Si Piston Alloy (LM13)
,”
Mater. Des.
,
31
(
7
), pp.
3518
3524
.
28.
Eshaghi
,
A.
,
Ghasemi
,
H. M.
, and
Rassizadehghani
,
J.
,
2011
, “
Effect of Heat Treatment on Microstructure and Wear Behavior of Al–Si Alloys With Various Iron Content
,”
Mater. Des.
,
32
(
3
), pp.
1520
1525
.
29.
Villenveuve
,
C.
, and
Samuel
,
F. H.
,
1999
, “
Fragmentation and Dissolution of Al5FeSi Phase During Solution Heat Treatment of Al-13 wt. %Si–Fe Alloys
,”
Int. J. Cast Met. Res.
,
12
(
3
), pp.
145
160
.
30.
Timelli
,
G.
, and
Fiorese
,
E.
,
2011
, “
Methods to Neutralize the Effects of Iron in Al–Si Foundry Alloys
,”
Metall. Ital.
,
103
(
3
), pp.
9
23
.
31.
Campbell
,
J.
,
2011
,
Complete Casting Handbook
,
Butterworth-Heinemann
,
Oxford, UK
.
32.
Narayanan
,
L. A.
,
Samuel
,
F. H.
, and
Gruzleski
,
J. E.
,
1995
, “
Dissolution of Iron Intermetallics in Al–Si Alloys Through Non-Equilibrium Heat Treatment
,”
Metall. Mater. Trans. A
,
26
(
8
), pp.
2161
2174
.
33.
Hurtalov
,
L.
,
Tillov
,
E.
, and
Chalupov
,
M.
,
2013
, “
The Structure Analysis of Secondary (Recycled) AlSi9Cu3 Cast Alloy With and Without Heat Treatment
,”
Eng. Trans.
,
61
(
3
), pp.
197
218
.
You do not currently have access to this content.