A new tangential contact model between a rough surface and a smooth rigid flat is proposed in this paper. The model considers the contribution of both elastically deformed asperities and plastically deformed asperities to the total tangential load of rough surface. The method combining the Mindlin partial slip solution with the Hertz solution is used to model the contact formulation of elastically deformed asperities, and for the plastically deformed asperities, the solution combining the fully plastic theory of normal contact with the bilinear relation between the tangential load and deformation developed by Fujimoto is implemented. The total tangential contact load is obtained by Greenwood and Williamson statistical analysis procedure. The proposed model is first compared to the model considering only elastically deformed asperities, and the effect of mean separation and plasticity index on the relationship between the tangential load and deformation is also investigated. It is shown that the present model can be used to describe the stick–slip behavior of the rough surface, and it is a more realistic-based model for the tangential rough contact. A comparison with published experimental results is also made. The proposed model agrees very well with the experimental results when the normal load is small, and shows an error when the normal load is large.

References

References
1.
Gaul
,
L.
, and
Lenz
,
J.
,
1997
, “
Nonlinear Dynamics of Structures Assembled by Bolted Joints
,”
Acta Mech.
,
125
(
1–4
), pp.
169
181
.
2.
Segalman
,
D. J.
,
Gregory
,
D. L.
,
Starr
,
M. J.
,
Resor
,
B. R.
,
Jew
,
M. D.
,
Lauffer
,
J. P.
, and
Ames
,
N. M.
,
2009
, “
Handbook on Dynamics of Jointed Structures
,” Sandia National Laboratories, Albuquerque, Mexico,
Report No. SAND2009-4164
.
3.
Ahmadian
,
H.
,
Mottershead
,
J. E.
,
James
,
S.
,
Friswell
,
M. I.
, and
Reece
,
C. A.
,
2006
, “
Modelling and Updating of Large Surface-to-Surface Joints in the AWE-MACE Structure
,”
Mech. Syst. Signal Process.
,
20
(
4
), pp.
868
880
.
4.
Hertz
,
H.
,
1881
, “
On the Contact of Elastic Solids
,”
J. Reine Angew. Math.
,
92
, pp.
156
171
.
5.
Greenwood
,
J.
, and
Williamson
,
J.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London Ser. A
,
295
(
1442
), pp.
300
319
.
6.
Greenwood
,
J.
, and
Tripp
,
J.
,
1970
, “
The Contact of Two Nominally Flat Rough Surfaces
,”
Proc. Inst. Mech. Eng.
,
185
(
1
), pp.
625
633
.
7.
Whitehouse
,
D. J.
, and
Archard
,
J.
,
1970
, “
The Properties of Random Surfaces of Significance in Their Contact
,”
Proc. R. Soc. London A
,
316
(
1524
), pp.
97
121
.
8.
Beheshti
,
A.
, and
Khonsari
,
M.
,
2012
, “
Asperity Micro-Contact Models as Applied to the Deformation of Rough Line Contact
,”
Tribol. Int.
,
52
(3), pp.
61
74
.
9.
Johnson
,
K.
,
Kendall
,
K.
, and
Roberts
,
A.
,
1971
, “
Surface Energy and the Contact of Elastic Solids
,”
Proc. R. Soc. London A.
,
324
(
1558
), pp.
301
313
.
10.
Pei
,
L.
,
Hyun
,
S.
,
Molinari
,
J.
, and
Robbins
,
M. O.
,
2005
, “
Finite Element Modeling of Elasto-Plastic Contact Between Rough Surfaces
,”
J. Mech. Phys. Solids
,
53
(
11
), pp.
2385
2409
.
11.
Kogut
,
L.
, and
Etsion
,
I.
,
2003
, “
A Finite Element Based Elastic-Plastic Model for the Contact of Rough Surfaces
,”
Tribol. Trans.
,
46
(
3
), pp.
383
390
.
12.
Chang
,
W.
,
Etsion
,
I.
, and
Bogy
,
D. B.
,
1987
, “
An Elastic-Plastic Model for the Contact of Rough Surfaces
,”
ASME J. Tribol.
,
109
(
2
), pp.
257
263
.
13.
Zhao
,
Y.
,
Maietta
,
D. M.
, and
Chang
,
L.
,
2000
, “
An Asperity Microcontact Model Incorporating the Transition From Elastic Deformation to Fully Plastic Flow
,”
ASME J. Tribol.
,
122
(
1
), pp.
86
93
.
14.
Zhao
,
Y.
, and
Chang
,
L.
,
2001
, “
A Model of Asperity Interactions in Elastic-Plastic Contact of Rough Surfaces
,”
ASME J. Tribol.
,
123
(
4
), pp.
857
864
.
15.
Kogut
,
L.
, and
Etsion
,
I.
,
2002
, “
Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat
,”
ASME J. Appl. Mech.
,
69
(
5
), pp.
657
662
.
16.
Jackson
,
R. L.
, and
Green
,
I.
,
2005
, “
A Finite Element Study of Elasto-Plastic Hemispherical Contact Against a Rigid Flat
,”
ASME J. Tribol.
,
127
(
2
), pp.
343
354
.
17.
Wadwalkar
,
S.
,
Jackson
,
R.
, and
Kogut
,
L.
,
2010
, “
A Study of the Elastic-Plastic Deformation of Heavily Deformed Spherical Contacts
,”
Proc. Inst. Mech. Eng. Part J
,
224
(
10
), pp.
1091
1102
.
18.
Brizmer
,
V.
,
Kligerman
,
Y.
, and
Etsion
,
I.
,
2006
, “
The Effect of Contact Conditions and Material Properties on the Elasticity Terminus of a Spherical Contact
,”
Int. J. Solids Struct.
,
43
(
18
), pp.
5736
5749
.
19.
Megalingam
,
A.
, and
Mayuram
,
M. M.
,
2012
, “
Comparative Contact Analysis Study of Finite Element Method Based Deterministic, Simplified Multi-Asperity and Modified Statistical Contact Models
,”
ASME J. Tribol.
,
134
(
1
), p.
014503
.
20.
Keer
,
L. M.
,
Kim
,
S. H.
,
Eberhardt
,
A. W.
, and
Vithoontien
,
V.
,
1991
, “
Compliance of Coated Elastic Bodies in Contact
,”
Int. J. Solids Struct.
,
27
(
6
), pp.
681
698
.
21.
Jones
,
R. E.
,
2007
, “
A Greenwood-Williamson Model of Small-Scale Friction
,”
ASME J. Appl. Mech.
,
74
(
1
), pp.
31
40
.
22.
Mindlin
,
R.
,
1949
, “
Compliance of Elastic Bodies in Contact
,”
ASME J. Appl. Mech.
,
16
(
3
), pp.
259
268
.
23.
Mindlin
,
R.
,
Mason
,
W.
,
Osmer
,
T.
, and
Deresiewicz
,
H.
,
1952
, “
Effects of an Oscillating Tangential Force on the Contact Surfaces of Elastic Spheres
,” Pros. 1st US National Congress of Applied Mechanics, ASME, New York, pp.
203
208
.
24.
Johnson
,
K. L.
,
1958
, “
The Effect of a Tangential Contact Force on the Rolling Motion of an Elastic Sphere on a Plane
,”
ASME J. Appl. Mech.
,
80
, pp.
339
346
.
25.
Johnson
,
K.
,
1961
, “
Energy Dissipation at Spherical Surfaces in Contact Transmitting Oscillating Forces
,”
J. Mech. Eng. Sci.
,
3
(
4
), pp.
362
368
.
26.
Farhang
,
K.
,
Segalman
,
D.
, and
Starr
,
M.
,
2007
, “
Approximate Constitutive Relation for Lap Joints Using a Tribo-Mechanical Approach
,”
ASME
Paper No. DETC2007-35071.
27.
Argatov
,
I. I.
, and
Butcher
,
E. A.
,
2011
, “
On the Iwan Models for Lap-Type Bolted Joints
,”
Int. J. Non-Linear Mech.
,
46
(
2
), pp.
347
356
.
28.
Chang
,
W.
,
Etsion
,
I.
, and
Bogy
,
D.
,
1988
, “
Static Friction Coefficient Model for Metallic Rough Surfaces
,”
ASME J. Tribol.
,
110
(
1
), pp.
57
63
.
29.
Kogut
,
L.
, and
Etsion
,
I.
,
2004
, “
A Static Friction Model for Elastic-Plastic Contacting Rough Surfaces
,”
ASME J. Tribol.
,
126
(
1
), pp.
34
40
.
30.
Eriten
,
M.
,
Polycarpou
,
A. A.
, and
Bergman
,
L. A.
,
2010
, “
Physics-Based Modeling for Partial Slip Behavior of Spherical Contacts
,”
Int. J. Solids Struct.
,
47
(
18–19
), pp.
2554
2567
.
31.
Eriten
,
M.
,
Polycarpou
,
A. A.
, and
Bergman
,
L. A.
,
2011
, “
Physics-Based Modeling for Fretting Behavior of Nominally Flat Rough Surfaces
,”
Int. J. Solids Struct.
,
48
(
10
), pp.
1436
1450
.
32.
Ödfalk
,
M.
, and
Vingsbo
,
O.
,
1992
, “
An Elastic-Plastic Model for Fretting Contact
,”
Wear
,
157
(
2
), pp.
435
444
.
33.
Fujimoto
,
T.
,
Kagami
,
J.
,
Kawaguchi
,
T.
, and
Hatazawa
,
T.
,
2000
, “
Micro-Displacement Characteristics Under Tangential Force
,”
Wear
,
241
(
2
), pp.
136
142
.
34.
Zhang
,
X.
, and
Vu-Quoc
,
L.
,
2007
, “
An Accurate Elasto-Plastic Frictional Tangential Force-Displacement Model for Granular-Flow Simulations: Displacement-Driven Formulation
,”
J. Comput. Phys.
,
225
(
1
), pp.
730
752
.
35.
Vu-Quoc
,
L.
,
Lesburg
,
L.
, and
Zhang
,
X.
,
2004
, “
An Accurate Tangential Force–Displacement Model for Granular-Flow Simulations: Contacting Spheres With Plastic Deformation, Force-Driven Formulation
,”
J. Comput. Phys.
,
196
(
1
), pp.
298
326
.
36.
Chen
,
W.
, and
Deng
,
X.
,
2005
, “
Structural Damping Caused by Micro-Slip Along Frictional Interfaces
,”
Int. J. Mech. Sci.
,
47
(
8
), pp.
1191
1211
.
37.
Johnson
,
K. L.
,
1995
,
Contact Mechanics
,
Cambridge University
,
Cambridge, UK
.
You do not currently have access to this content.