This paper investigates coupling strategies for finite element modeling (FEM) of thermal elastohydrodynamic lubrication (TEHL) problems. The TEHL problem involves a strong coupling between several physics: solid mechanics, fluid mechanics, and heat transfer. Customarily, this problem is split into two parts (elastohydrodynamic (EHD) and thermal) and the two problems are solved separately while an iterative procedure is established between their respective solutions. This weak coupling strategy involves a loss of information, as each problem is not made intimately aware of the evolution of the other problem's solution during the resolution procedure. This typically leads to slow convergence rates. The current work offers a full coupling strategy for the TEHL problem, i.e., both the EHD and thermal parts are solved simultaneously in a monolithic system. The system of equations is generated from a finite element discretization of the governing field variables: hydrodynamic pressure, solids elastic deformation, and temperature. The full coupling strategy prevents any loss of information during the resolution procedure leading to very fast convergence rates (solution is attained within a few iterations only). The performance of the full coupling strategy is compared to that of different weak coupling strategies. Out of simplicity, only steady-state line contacts are considered in this work. Nevertheless, the proposed methodology, results, and findings are of a general nature and may be extrapolated to circular or elliptical contacts under steady-state or transient conditions.

References

References
1.
Cheng
,
H. S.
, and
Sternlicht
,
B.
,
1965
, “
A Numerical Solution for the Pressure, Temperature and Film Thickness Between Two Infinitely Long, Lubricated Rolling and Sliding Cylinders, Under Heavy Loads
,”
ASME J. Basic. Eng.
,
87
(
3
), pp.
695
707
.
2.
Cheng
,
H. S.
,
1965
, “
A Refined Solution to the Thermal-Elastohydrodynamic Lubrication of Rolling and Sliding Cylinders
,”
ASLE Trans.
,
8
(4), pp.
397
410
.
3.
Zhu
,
D.
, and
Wen
,
S.
,
1985
, “
A Full Numerical Solution for the Thermo-Elastohydrodynamic Problem in Elliptical Contacts
,”
ASME J. Tribol.
,
106
(2), pp.
246
254
.
4.
Kim
,
K. H.
, and
Sadeghi
,
F.
,
1992
, “
Three-Dimensional Temperature Distribution in EHD Lubrication—Part I: Circular Contact
,”
ASME J. Tribol.
,
114
(
1
), pp.
32
41
.
5.
Guo
,
F.
,
Yang
,
P.
, and
Qu
,
S.
,
2001
, “
On the Theory of Thermal Elastohydrodynamic Lubrication at High Slide-Roll Ratios—Circular Glass-Steel Contact Solution at Opposite Sliding
,”
ASME J. Tribol.
,
123
(
4
), pp.
816
821
.
6.
Liu
,
X.
,
Jiang
,
M.
,
Yang
,
P.
, and
Kaneta
,
M.
,
2005
, “
Non-Newtonian Thermal Analyses of Point EHL Contacts Using the Eyring Model
,”
ASME J. Tribol.
,
127
(
1
), pp.
70
81
.
7.
Sharif
,
K. J.
,
Kong
,
S.
,
Evans
,
H. P.
, and
Snidle
,
R. W.
,
2001
, “
Contact and Elastohydrodynamic Analysis of Worm Gears—Part 1: Theoretical Formulation
,”
Proc. Inst. Mech. Eng. Part C
,
215
(
7
), pp.
817
830
.
8.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
,
1959
,
Conduction of Heat in Solids
,
Oxford University Press
, Oxford, UK.
9.
Blok
,
H.
,
1963
, “
The Flash Temperature Concept
,”
Wear
,
6
(6), pp.
484
483
.
10.
Hartinger
,
M.
,
Dumont
,
M.-L.
,
Ioannides
,
S.
,
Gosman
,
D.
, and
Spikes
,
H.
,
2008
, “
CFD Modeling of a Thermal and Shear-Thinning Elastohydrodynamic Line Contact
,”
ASME J. Tribol.
,
130
(
4
), p.
041503
.
11.
Salehizadeh
,
H.
, and
Saka
,
N.
,
1991
, “
Thermal Non-Newtonian Elastohydrodynamic Lubrication of Rolling Line Contacts
,”
ASME J. Tribol.
,
113
(
3
), pp.
481
491
.
12.
Wolff
,
R.
, and
Kubo
,
A.
,
1994
, “
The Application of Newton–Raphson Method to Thermal Elastohydrodynamic Lubrication of Line Contacts
,”
ASME J. Tribol.
,
116
(
4
), pp.
733
740
.
13.
Kazama
,
T.
,
Ehret
,
P.
, and
Taylor
,
C. M.
,
2001
, “
On the Effects of the Temperature Profile Approximation in the Thermal Newtonian Solutions of Elastohydrodynamic Line Contacts
,”
Proc. Inst. Mech. Eng. Part J
,
215
(
1
), pp.
109
120
.
14.
Jiang
,
X.
,
Wong
,
P. L.
, and
Zhang
,
Z.
,
1995
, “
Thermal Non-Newtonian EHL Analysis of Rib-Roller End Contact in Tapered Roller Bearings
,”
ASME J. Tribol.
,
117
(
4
), pp.
646
654
.
15.
Lee
,
R. T.
,
Hsu
,
C. H.
, and
Kuo
,
W. F.
,
1995
, “
Multilevel Solution for Thermal Elastohydrodynamic Lubrication of Rolling-Sliding Circular Contacts
,”
Tribol. Int.
,
28
(
8
), pp.
541
552
.
16.
Kim
,
H. J.
,
Ehret
,
P.
,
Dowson
,
D.
, and
Taylor
,
C. M.
,
2001
, “
Thermal Elastohydrodynamic Analysis of Circular Contacts—Part 1: Newtonian Model
,”
Proc. Inst. Mech. Eng. Part J
,
215
(4), pp.
339
352
.
17.
Kim
,
H. J.
,
Ehret
,
P.
,
Dowson
,
D.
, and
Taylor
,
C. M.
,
2001
, “
Thermal Elastohydrodynamic Analysis of Circular Contacts—Part 2: Non-Newtonian Model
,”
Proc. Inst. Mech. Eng. Part J
,
215
(
4
), pp.
353
362
.
18.
Kaneta
,
M.
,
Shigeta
,
T.
, and
Yang
,
P.
,
2006
, “
Film Pressure Distributions in Point Contacts Predicted by Thermal EHL Analysis
,”
Tribol. Int.
,
39
(
8
), pp.
812
819
.
19.
Wang
,
Y.
,
Li
,
H.
,
Tong
,
J.
, and
Yang
,
P.
,
2004
, “
Transient Thermoelastohydrodynamic Lubrication Analysis of an Involute Spur Gear
,”
Tribol. Int.
,
37
(
10
), pp.
773
782
.
20.
Habchi
,
W.
,
Eyheramendy
,
D.
,
Bair
,
S.
,
Vergne
,
P.
, and
Morales-Espejel
,
G. E.
,
2008
, “
Thermal Elastohydrodynamic Lubrication of Point Contacts Using a Newtonian/Generalized Newtonian Lubricant
,”
Tribol. Lett.
,
30
(
1
), pp.
41
52
.
21.
Habchi
,
W.
,
Eyheramendy
,
D.
,
Vergne
,
P.
, and
Morales-Espejel
,
G. E.
,
2012
, “
Stabilized Fully-Coupled Finite Elements for Elastohydrodynamic Lubrication Problems
,”
Adv. Eng. Software
,
46
(
1
), pp.
4
18
.
22.
Björling
,
M.
,
Habchi
,
W.
,
Bair
,
S.
,
Larsson
,
R.
, and
Marklund
,
P.
,
2014
, “
Friction Reduction in Elastohydrodynamic Contacts by Thin Layer Thermal Insulation
,”
Tribol. Lett.
,
53
(
2
), pp.
477
486
.
23.
Habchi
,
W.
,
2014
, “
A Numerical Model for the Solution of Thermal Elastohydrodynamic Lubrication in Coated Circular Contacts
,”
Tribol. Int.
,
73
, pp.
57
68
.
24.
Bruyere
,
V.
,
Fillot
,
N.
,
Morales-Espejel
,
G. E.
, and
Vergne
,
P.
,
2012
, “
Computational Fluid Dynamics and Full Elasticity Model for Sliding Line Thermal Elastohydrodynamic Contacts
,”
Tribol. Int.
,
46
(
1
), pp.
3
13
.
25.
Habchi
,
W.
,
Eyheramendy
,
D.
,
Vergne
,
P.
, and
Morales-Espejel
,
G. E.
,
2008
, “
A Full-System Approach of the Elastohydrodynamic Line/Point Contact Problem
,”
ASME J. Tribol.
,
130
(
2
), p.
021501
.
26.
Oh
,
K. P.
, and
Rohde
,
S. M.
,
1977
, “
Numerical Solution of the Point Contact Problem Using the Finite Element Method
,”
Int. J. Numer. Methods Eng.
,
11
(
10
), pp.
1507
1518
.
27.
Rohde
,
S. M.
, and
Oh
,
K. P.
,
1975
, “
A Unified Treatment of Thick and Thin Film Elastohydrodynamic Problems by Using Higher Order Element Methods
,”
Proc. R. Soc. London Part A
,
343
(
1634
), pp.
315
331
.
28.
Houpert
,
L. G.
, and
Hamrock
,
B. J.
,
1986
, “
Fast Approach for Calculating Film Thicknesses and Pressures in Elastohydrodynamically Lubricated Contacts at High Loads
,”
ASME J. Tribol.
,
108
(
3
), pp.
411
420
.
29.
Hsiao
,
H. S. S.
,
Hamrock
,
B. J.
, and
Tripp
,
J. H.
,
1998
, “
Finite Element System Approach to EHL of Elliptical Contacts —Part I: Isothermal Circular Non-Newtonian Formulation
,”
ASME J. Tribol.
,
120
(
4
), pp.
695
704
.
30.
Evans
,
H. P.
, and
Hughes
,
T. G.
,
2000
, “
Evaluation of Deflection in Semi-Infinite Bodies by a Differential Method
,”
Proc. Inst. Mech. Eng. Part C
,
214
(
4
), pp.
563
584
.
31.
Holmes
,
M. J. A.
,
Evans
,
H. P.
,
Hughes
,
T. G.
, and
Snidle
,
R. W.
,
2003
, “
Transient Elastohydrodynamic Point Contact Analysis Using a New Coupled Differential Deflection Method—Part I: Theory and Validation
,”
Proc. Inst. Mech. Eng. Part J
,
217
(
4
), pp.
289
303
.
32.
Wu
,
S. R.
,
1986
, “
A Penalty Formulation and Numerical Approximation of the Reynolds–Hertz Problem of Elastohydrodynamic Lubrication
,”
Int. J. Eng. Sci.
,
24
(
6
), pp.
1001
1013
.
33.
Yang
,
P.
, and
Wen
,
S.
,
1990
, “
A Generalized Reynolds Equation for Non-Newtonian Thermal Elastohydrodynamic Lubrication
,”
ASME J. Tribol.
,
112
(4), pp.
631
636
.
34.
Bair
,
S.
,
2007
,
High Pressure Rheology for Quantitative Elastohydrodynamics
,
Elsevier Science
,
Amsterdam, The Netherlands
.
35.
Roelands
,
C. J. A.
,
1966
, “
Correlational Aspects of the Viscosity-Temperature-Pressure Relationship of Lubricating Oils
,” Ph.D. thesis, Technische Hogeschool Delft, Delft, The Netherlands.
36.
Dowson
,
D.
, and
Higginson
,
G. R.
,
1966
,
Elastohydrodynamic Lubrication: The Fundamental of Roller and Gear Lubrication
,
Oxford
,
Pergamon, Turkey
.
37.
Brooks
,
A. N.
, and
Hughes
,
T. J. R.
,
1982
, “
Streamline-Upwind/Petrov–Galerkin Formulations for Convective Dominated Flows With Particular Emphasis on the Incompressible Navier–Stokes Equations
,”
Comput. Methods Appl. Mech. Eng.
,
32
(1–3), pp.
199
259
.
38.
Hughes
,
T. J. R.
,
Franca
,
L. P.
, and
Hulbert
,
G. M.
,
1989
, “
A New Finite Element Formulation for Computational Fluid Dynamics—VII: The Galerkin-Least-Squares Method for Advective-Diffusive Equations
,”
Comput. Methods Appl. Mech. Eng.
,
73
(
2
), pp.
173
189
.
39.
Galeão
,
A. C.
,
Almeida
,
R. C.
,
Malta
,
S. M. C.
, and
Loula
,
A. F. D.
,
2004
, “
Finite Element Analysis of Convection Dominated Reaction-Diffusion Problems
,”
Appl. Numer. Math.
,
48
(
2
), pp.
205
222
.
40.
Davis
,
T. A.
, and
Duff
,
I. S.
,
1997
, “
An Unsymmetric-Pattern Multifrontal Method for Sparse LU Factorization
,”
SIAM J. Matrix Anal. Appl.
,
18
(
1
), pp.
140
158
.
41.
Deuflhard
,
P.
,
2004
,
Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms
,
Springer
,
Berlin/Heidelberg
.
42.
Habchi
,
W.
,
Vergne
,
P.
,
Bair
,
S.
,
Andersson
,
O.
,
Eyheramendy
,
D.
, and
Morales-Espejel
,
G. E.
,
2010
, “
Influence of Pressure and Temperature Dependence of Thermal Properties of a Lubricant on the Behavior of Circular TEHD Contacts
,”
Tribol. Int.
,
43
(
10
), pp.
1842
1850
.
43.
Björling
,
M.
,
Habchi
,
W.
,
Bair
,
S.
,
Larsson
,
R.
, and
Marklund
,
P.
,
2013
, “
Towards the True Prediction of EHL Friction
,”
Tribol. Int.
,
66
, pp.
19
26
.
You do not currently have access to this content.