This paper presents a cubic model for the sphere–flat elastic–plastic contact without adhesion. In the cubic model, the applied load and the contact area are described by the cubic polynomial functions of the displacement to the power of 1/2 during loading and unloading, and the applied load is also expressed as the cubic polynomial function of the contact area to the power of 1/3 during loading. Utilizing these cubic polynomial functions, the elastic–plastic load (EPL) index, which is defined by the ratio between the dissipated energy due to plastic deformations and the work done to deform the sphere during loading, is calculated analytically. The calculated EPL index is just the ratio between the residue displacement after unloading and the maximum elastic–plastic displacement after loading. Using the cubic model, this paper extends the Johnson–Kendall–Roberts (JKR) model from the elastic regime to the elastic–plastic regime. Introducing the Derjaguin–Muller–Toporov (DMT) adhesion, the unified elastic–plastic adhesion model is obtained and compared with the simplified analytical model (SAM) and Kogut–Etsion (KE) model.

References

References
1.
Hertz
,
H.
,
1881
, “
Ueber die Berührung Fester Elastischer Körper
,”
J. Reine Angew. Math.
,
92
(
4
), pp.
156
171
.
2.
Tabor
,
D.
,
1951
,
The Hardness of Metals
(Oxford Classic Texts),
Clarendon
,
London
.
3.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
,
1987
, “
An Elastic-Plastic Model for the Contact of Rough Surfaces
,”
ASME J. Tribol.
,
109
(
2
), pp.
257
263
.
4.
Zhao
,
Y.
,
Maietta
,
D. M.
, and
Chang
,
L.
,
2000
, “
An Asperity Microcontact Model Incorporating the Transition From Elastic Deformation to Fully Plastic Flow
,”
ASME J. Tribol.
,
122
(
1
), pp.
86
93
.
5.
Kogut
,
L.
, and
Etsion
,
I.
,
2002
, “
Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat
,”
ASME J. Appl. Mech.
,
69
(
5
), pp.
657
662
.
6.
Etsion
,
I.
,
Kligerman
,
Y.
, and
Kadin
,
Y.
,
2005
, “
Unloading of an Elastic-Plastic Loaded Spherical Contact
,”
Int. J. Solids Struct.
,
42
(
13
), pp.
3716
3729
.
7.
Wang
,
Z. Q.
,
2012
, “
A Compact and Easily Accepted Continuous Model for the Elastic-Plastic Contact of a Sphere and a Flat
,”
ASME J. Appl. Mech.
,
80
(
1
), p.
014506
.
8.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
,
1988
, “
Static Friction Coefficient Model for Metallic Rough Surfaces
,”
ASME J. Tribol.
,
110
(
1
), pp.
57
63
.
9.
Brizmer
,
V.
,
Kligerman
,
Y.
, and
Etsion
,
I.
,
2006
, “
The Effect of Contact Conditions and Material Properties on the Elasticity Terminus of a Spherical Contact
,”
Int. J. Solids Struct.
,
43
(
18–19
), pp.
5736
5749
.
10.
Johnson
,
K. L.
,
Kendall
,
K.
, and
Roberts
,
A. D.
,
1971
, “
Surface Energy and the Contact of Elastic Solids
,”
Proc. R. Soc. A
,
324
(
1558
), pp.
301
313
.
11.
Derjaguin
,
B. V.
,
Muller
,
V. M.
, and
Toporov
,
Y. P.
,
1975
, “
Effect of Contact Deformations on the Adhesion of Particles
,”
J. Colloid Interface Sci.
,
53
(
75
), pp.
314
326
.
12.
Maugis
,
D.
,
1992
, “
Adhesion of Spheres: The JKR-DMT Transition Using a Dugdale Model
,”
J. Colloid Interface Sci.
,
150
(
92
), pp.
243
269
.
13.
Carpick
,
R. W.
,
Ogletree
,
D. F.
, and
Salmeron
,
M.
,
1999
, “
A General Equation for Fitting Contact Area and Friction vs Load Measurements
,”
J. Colloid Interface Sci.
,
211
(
2
), pp.
395
400
.
14.
Schwarz
,
U. D.
,
2003
, “
A Generalized Analytical Model for the Elastic Deformation of an Adhesive Contact Between a Sphere and a Flat Surface
,”
J. Colloid Interface Sci.
,
261
(
1
), pp.
99
106
.
15.
Chowdhury
,
S. K. R.
, and
Pollock
,
H. M.
,
1981
, “
Adhesion Between Metal Surfaces: The Effect of Surface Roughness
,”
Wear
,
66
(
3
), pp.
307
321
.
16.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
,
1988
, “
Adhesion Model for Metallic Rough Surfaces
,”
ASME J. Tribol.
,
110
(
1
), pp.
50
56
.
17.
Kogut
,
L.
, and
Etsion
,
I.
,
2003
, “
Adhesion in Elastic-Plastic Spherical Microcontact
,”
J. Colloid Interface Sci.
,
261
(
2
), pp.
372
378
.
18.
Majumder
,
S.
,
2003
, “
Contact Properties of a Micro Electromechanical Switch With Gold On-Gold Contacts
,” Ph.D. thesis, Electrical and Computer Engineering, Northeastern University, Boston, MA.
19.
Du
,
Y.
,
Chen
,
L.
,
McGruer
,
N. E.
,
Adams
,
G. G.
, and
Etsion
,
I.
,
2007
, “
A Finite Element Model of Loading and Unloading of an Asperity Contact With Adhesion and Plasticity
,”
J. Colloid Interface Sci.
,
312
(
2
), pp.
522
528
.
20.
Kadin
,
Y.
,
Kligerman
,
Y.
, and
Etsion
,
I.
,
2008
, “
Jump-In Induced Plastic Yield Onset of Approaching Microcontacts in the Presence of Adhesion
,”
J. Appl. Phys.
,
103
(
1
), p.
013513
.
21.
Kadin
,
Y.
,
Kligerman
,
Y.
, and
Etsion
,
I.
,
2008
, “
Loading-Unloading of an Elastic-Plastic Adhesive Spherical Microcontact
,”
J. Colloid Interface Sci.
,
321
(
1
), pp.
242
250
.
You do not currently have access to this content.