Solid processing storage and conveying units (e.g., hoppers, silos, tumblers, etc.) often involve the collision of granular media with relatively thin walls. Therefore, the impact of a sphere with a thin plate is a problem with both fundamental and practical importance. In the present work, the normal elastoplastic impact between a sphere and a thin plate is analyzed using an explicit finite element method (FEM). The impact involves plastic deformation and flexural vibrations, which when combined results in significant energy dissipation. One way to quantify the energy dissipation is to employ the coefficient of restitution (COR), which is also a key input parameter needed in various granular flow models. The results were validated against the available experimental data. It is observed that, in addition to material properties and impact parameters, the energy dissipation is strongly dependent on the ratio of plate thickness to sphere diameter. A comprehensive parametric study is conducted to evaluate the effect of material properties, geometry, and impact parameters on the energy dissipation. For the impact velocities commonly observed in granular systems (V = 5 m/s or less), it was determined that the energy lost to flexural vibrations can be neglected if the plate thickness is more than twice the sphere diameter, i.e., tcr > 2d. In this scenario, the mode of energy dissipated is primarily due to the plasticity effects.

References

References
1.
Bertrand
,
F.
,
Leclaire
,
L.-A.
, and
Levecque
,
G.
,
2005
, “
DEM-Based Models for the Mixing of Granular Materials
,”
Chem. Eng. Sci.
,
60
(
8–9
), pp.
2517
2531
.
2.
Cleary
,
P. W.
, and
Sawley
,
M. L.
,
2002
, “
DEM Modelling of Industrial Granular Flows: 3D Case Studies and the Effect of Particle Shape on Hopper Discharge
,”
Appl. Math. Modell.
,
26
(
2
), pp.
89
111
.
3.
Ketterhagen
,
W. R.
,
Curtis
,
J. S.
, and
Wassgren
,
C. R.
,
2005
, “
Stress Results From Two-Dimensional Granular Shear Flow Simulations Using Various Collision Models
,”
Phys. Rev. E
,
71
(
6
), p.
061307
.
4.
Clelland
,
R.
, and
Hrenya
,
C. M.
,
2002
, “
Simulations of a Binary-Sized Mixture of Inelastic Grains in Rapid Shear Flow
,”
Phys. Rev. E
,
65
(
3
), p.
031301
.
5.
Anand
,
A.
,
Curtis
,
J. S.
,
Wassgren
,
C. R.
,
Hancock
,
B. C.
, and
Ketterhagen
,
W. R.
,
2008
, “
Predicting Discharge Dynamics From a Rectangular Hopper Using the Discrete Element Method (DEM)
,”
Chem. Eng. Sci.
,
63
(
24
), pp.
5821
5830
.
6.
McCarthy
,
J. J.
,
Jasti
,
V.
,
Marinack
,
M.
, and
Higgs
,
C. F.
,
2010
, “
Quantitative Validation of the Discrete Element Method Using an Annular Shear Cell
,”
Powder Technol.
,
203
(
1
), pp.
70
77
.
7.
H.
Hertz
,
1882
, “
Über die Berührung Fester Elastischer Körper (On the Contact of Solid Elastic Bodies)
,”
J. Reine Angew. Math.
,
92
, pp.
156
171
.
8.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
1st ed.
,
Cambridge University Press
,
Cambridge, UK
.
9.
Weir
,
G.
, and
Tallon
,
S.
,
2005
, “
The Coefficient of Restitution for Normal Incident, Low Velocity Particle Impacts
,”
Chem. Eng. Sci.
,
60
(
13
), pp.
3637
3647
.
10.
Thornton
,
C.
,
1997
, “
Coefficient of Restitution for Collinear Collisions of Elastic Perfectly Plastic Spheres
,”
ASME J. Appl. Mech.
,
64
(
2
), pp.
383
386
.
11.
Jackson
,
R. L.
,
Green
,
I.
, and
Marghitu
,
D. B.
,
2010
, “
Predicting the Coefficient of Restitution of Impacting Elastic-Perfectly Plastic Spheres
,”
Nonlinear Dyn.
,
60
(
3
), pp.
217
229
.
12.
Raman
,
C. V.
,
1920
, “
On Some Applications of Hertz's Theory of Impact
,”
Phys. Rev.
,
15
(
4
), pp.
277
284
.
13.
Zener
,
C.
,
1941
, “
The Intrinsic Inelasticity of Large Plates
,”
Phys. Rev.
,
59
(
8
), pp.
669
673
.
14.
Hunter
,
S. C.
,
1957
, “
Energy Absorbed by Elastic Waves During Impact
,”
J. Mech. Phys. Solids
,
5
(
3
), pp.
162
171
.
15.
Reed
,
J.
,
1985
, “
Energy Losses Due to Elastic Wave Propogation During an Elastic Impact
,”
J. Phys. D: Appl. Phys.
,
18
(
12
), pp.
2329
2337
.
16.
Werner
,
G.
,
1960
,
Impact: The Theory and Physical Behavior of Colliding Solids
,
Edward Arnold
,
London
.
17.
Tabor
,
D.
,
1948
, “
A Simple Theory of Stastic and Dynamic Hardness
,”
Proc. R. Soc. London Ser. A: Math. Phys. Sci.
,
192
(
1029
), pp.
247
274
.
18.
Kharaz
,
A. H.
, and
Gorham
,
D. A.
,
2000
, “
A Study of the Restitution Coefficient in Elastic-Plastic Impact
,”
Philos. Mag. Lett.
,
80
(
8
), pp.
549
559
.
19.
Koller
,
M. G.
, and
Kolsky
,
H.
,
1987
, “
Waves Produced by the Elastic Impact of Spheres on Thick Plates
,”
Int. J. Solids Struct.
,
23
(
10
), pp.
1387
1400
.
20.
Vincent
,
J. H.
,
1900
, “
Experiments on Impact
,”
Cambridge Philosophical Society, Vol.
10
, pp.
332
357
.
21.
Tillet
,
J. P. A.
,
1954
, “
A Study of the Impact on Spheres of Plates
,”
Proc. Phys. Soc. London Sect. B
,
67
(
417
), pp.
677
688
.
22.
Sondergaard
,
R.
,
Chaney
,
K.
, and
Brennen
,
C. E.
,
1990
, “
Measurements of Solid Spheres Bouncing Off Flat Plates
,”
ASME J. Appl. Mech.
,
57
(
3
), pp.
694
699
.
23.
Marinack
,
M. C.
, Jr.
,
Musgrave
,
R. E.
, and
Higgs
,
C. F.
,
2013
, “
Experimental Investigations on the Coefficient of Restitution of Single Particles
,”
Tribol. Trans.
,
56
(
4
), pp.
572
580
.
24.
Wu
,
C. Y.
,
Li
,
L. Y.
, and
Thornton
,
C.
,
2003
, “
Rebound Behaviour of Spheres for Plastic Impacts
,”
Int. J. Impact Eng.
,
28
(
9
), pp.
929
946
.
25.
Li
,
L.
,
Thornton
,
C.
, and
Wu
,
C.
,
2000
, “
Impact Behaviour of Elastoplastic Spheres With a Rigid Wall
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
214
(
8
), pp.
1107
1114
.
26.
Zhang
,
X.
, and
Vu-Quoc
,
L.
,
2002
, “
Modeling the Dependence of the Coefficient of Restitution on the Impact Velocity in Elasto-Plastic Collisions
,”
Int. J. Impact Eng.
,
27
(
3
), pp.
317
341
.
27.
Jackson
,
R. L.
, and
Green
,
I.
,
2005
, “
A Finite Element Study of Elasto-Plastic Hemispherical Contact Against a Rigid Flat
,”
ASME J. Tribol.
,
127
(
2
), pp.
343
354
.
28.
Aryaei
,
A.
,
Hashemnia
,
K.
, and
Jafarpur
,
K.
,
2010
, “
Experimental and Numerical Study of Ball Size Effect on Restitution Coefficient in Low Velocity Impacts
,”
Int. J. Impact Eng.
,
37
(
10
), pp.
1037
1044
.
29.
Wong
,
C. X.
,
Daniel
,
M. C.
, and
Rongong
,
J. A.
,
2009
, “
Energy Dissipation Prediction of Particle Dampers
,”
J. Sound Vib.
,
319
(
1–2
), pp.
91
118
.
30.
ANSYS
,
2012
, “
ANSYS Academic Research, Release 14.5, Help System
,” ANSYS Theory Reference Guide, ANSYS, Canonsburg, PA.
31.
Ozdemir
,
Y. I.
, and
Ayvaz
,
Y.
,
2014
, “
Is It Shear Locking or Mesh Refinement Problem?
,”
Struct. Eng. Mech.
,
50
(
2
), pp.
181
199
.
32.
Seifried
,
R.
,
Minamoto
,
H.
, and
Eberhard
,
P.
,
2010
, “
Viscoplastic Effects Occurring in Impacts of Aluminum and Steel Bodies and Their Influence on the Coefficient of Restitution
,”
ASME J. Appl. Mech.
,
77
(
4
), pp.
1
7
.
33.
Wu
,
C. Y.
,
Li
,
L. Y.
, and
Thornton
,
C.
,
2005
, “
Energy Dissipation During Normal Impact of Elastic and Elastic-Plastic Spheres
,”
Int. J. Impact Eng.
,
32
(
1–4
), pp.
593
604
.
34.
Etsion
,
I.
,
Kligerman
,
Y.
, and
Kadin
,
Y.
,
2005
, “
Unloading of an Elastic-Plastic Loaded Spherical Contact
,”
Int. J. Solids Struct.
,
42
(
13
), pp.
3716
3729
.
You do not currently have access to this content.