High chromium white irons (HCCIs) are used extensively throughout the mineral processing industry to handle erosive and corrosive slurries. This study is an investigation of the effect of impact angle and velocity on slurry erosion of HCCI. The tests were carried out using a rotating whirling-arm rig with particle concentration of 1 wt. %. Silica sand which has a nominal size range of 500–710 μm was used as an erodent. The results were obtained for angles of 30 deg, 45 deg, 60 deg, and 90 deg to the exposed surface and velocities of 5, 10, and 15 m/s. The highest erosion resistance of HCCI was at normal impact and the lowest at an angle of 30 deg, irrespective of velocity. The low erosion resistance at an oblique angle is due to large material removal by microcutting from ductile matrix and gross removal of carbides. The effect of velocity, over the studied range from 5 m/s to 15 m/s, on the increase in the erosion rate was minor. The change of impact velocity resulted in changing the slurry erosion mechanisms. At normal incidence, plastic indentation with extruded material of the ductile matrix was the dominant erosion mechanism at low impact velocity (5 m/s). With increasing impact velocity, the material was removed by the indentation of the ductile matrix and to smaller extent of carbide fracture. However, at high impact velocity (15 m/s), gross fracture and cracking of the carbides besides plastic indentation of the ductile matrix were the dominant erosion mechanisms.

References

References
1.
Cortie
,
M. B.
,
McEwan
,
J. J.
, and
Enright
,
D. P.
,
1996
, “
Materials Selection in the Mining Industry: Old Issues and New Challenges
,”
J. South. Afr. Inst. Min. Metall.
,
96
(
4
), pp.
145
157
.
2.
Clark
,
H. McL.
, and
Llewellyn
,
R. J.
,
2001
, “
Assessment of the Erosion Resistance of Steels Used for Slurry Handling and Transport in Mineral Processing Applications
,”
Wear
,
250
(1–12), pp.
32
44
.
3.
Jones
,
M. R.
, and
Llewellyn
,
J.
,
2009
, “
Erosion–Corrosion Assessment of Materials for Use in the Resources Industry
,”
Wear
,
267
(
11
), pp.
2003
2009
.
4.
Parent
,
L. L.
, and
Li
,
D. Y.
,
2013
, “
Wear of Hydrotransport Lines in Athabasca Oil Sands
,”
Wear
,
301
(1–2), pp.
477
482
.
5.
Xie
,
Y.
,
Jiang
,
J.
,
Tufa
,
K. Y.
, and
Yick
,
S.
,
2015
, “
Wear Resistance of Materials Used for Slurry Transport
,”
Wear
,
332–333
, pp.
1104
1110
.
6.
Nelson
,
G. D.
,
Powell
,
G. L. F.
, and
Linton
,
V. M.
,
2006
, “
Investigation of the Wear Resistance of High Chromium White Irons
,”
19th International Conference on Surface Modification Technologies
,
T. S.
Sudarshan
and
J. J.
Stiglich
, eds.,
ASM International
,
Materials Park, OH
, pp.
111
118
.
7.
Oka
,
Y. I.
,
Ohnogi
,
H.
,
Hosokawa
,
T.
, and
Matsumura
,
M.
,
1997
, “
The Impact Angle Dependence of Erosion Damage Caused by Solid Particle Impact
,”
Wear
,
203–204
, pp.
573
579
.
8.
Burstein
,
G. T.
, and
Sasaki
,
K.
,
2000
, “
Effect of Impact Angle on the Slurry Erosion–Corrosion of 304L Stainless Steel
,”
Wear
,
240
(1–2), pp.
80
94
.
9.
Lopez
,
D. L.
,
Congote
,
J. P.
,
Canob
,
J. R.
,
Torob
,
A.
, and
Tschiptschin
,
A. P.
,
2005
, “
Effect of Particle Velocity and Impact Angle on the Corrosion–Erosion of AISI 304 and AISI 420 Stainless Steels
,”
Wear
,
259
(1–6), pp.
118
124
.
10.
Parsi
,
M.
,
Najmi
,
K.
,
Najafifard
,
F.
,
Hassani
,
S.
,
McLaury
,
B. S.
, and
Shirazi
,
S. A.
,
2014
, “
A Comprehensive Review of Solid Particle Erosion Modeling for Oil and Gas Wells and Pipelines Applications
,”
J. Nat. Gas. Sci. Eng.,
21
, pp.
850
873
.
11.
Aminul Islam
,
M. D.
, and
Farhat
,
Z. N.
,
2014
, “
Effect of Impact Angle and Velocity on Erosion of API X42 Pipeline Steel Under High Abrasive Feed Rate
,”
Wear
,
311
(1–2), pp.
180
190
.
12.
Abd-Elrhman
,
Y. M.
,
Abouel-Kasem
,
A.
,
Emara
,
K. M.
, and
Ahmed
,
S. M.
,
2013
, “
Effect of Impact Angle on Slurry Erosion Behaviour and Mechanisms of Carburized AISI 5117 Steel
,”
ASME J. Tribol.
,
136
(1), p.
011106
.
13.
Abd-Elrhman
,
Y. M.
,
Abouel-Kasem
,
A.
,
Ahmed
,
S. M.
, and
Emara
,
K. M.
,
2014
, “
Stepwise Erosion as a Method for Investigating the Wear Mechanisms at Different Impact Angles in Slurry Erosion
,”
ASME J. Tribol.
,
136
(
2
), p.
021608
.
14.
Finnie
,
I.
,
1960
, “
Erosion of Surfaces by Solid Particles
,”
Wear
,
3
(
2
), pp.
87
103
.
15.
Lin
,
F. Y.
, and
Shao
,
H. S.
,
1991
, “
Effect of Impact Velocity on Slurry Erosion and a New Design of a Slurry Erosion Tester
,”
Wear
,
143
(
2
), pp.
231
240
.
16.
Lindsley
,
B. A.
, and
Marder
,
A. R.
,
1999
, “
The Effect of Velocity on the Solid Particle Erosion Rate of Alloys
,”
Wear
,
225–229 Part 1
, pp.
510
516
.
17.
Clark
,
H. McL.
,
2002
, “
Particle Velocity and Size Effects in Laboratory Slurry Erosion Measurements or… Do You Know What Your Particles Are Doing?
Tribol. Int.
,
35
(
10
), pp.
617
624
.
18.
Badr
,
H. M.
,
Habib
,
M. A.
,
Ben-Mansour
,
R.
, and
Said
,
S. A. M.
,
2002
, “
Effect of Flow Velocity and Particle Size on Erosion in a Pipe With Sudden Contraction
,”
6th Saudi Engineering Conference
, KFUPM, Dhahran, Saudi Arabia, Vol.
5
, pp.
79
88
.
19.
Stevenson
,
A. N. J.
, and
Hutchings
,
I. M.
,
1995
, “
Wear of Hardfacing White Cast Irons by Solid Particle Erosion
,”
Wear
,
186–187
, pp.
150
158
.
20.
Al-Bukhaiti
,
M. A.
,
Ahmed
,
S. M.
,
Badran
,
F. M. F.
, and
Emara
,
K. M.
,
2007
, “
Effect of Impingement Angle on Erosion Mechanisms of 1017 Steel and High-Chromium White Cast Iron
,”
Wear
,
262
(
9–10
), pp.
1187
1198
.
21.
Sapate
,
S. G.
, and
Rama Rao
,
A. V.
,
2006
, “
Erosive Wear Behaviour of Weld Hard Facing High Chromium Cast Irons: Effect of Erodent Particles
,”
Tribol. Int.
,
39
(
3
), pp.
206
212
.
22.
Aptekar
,
S. S.
, and
Kosel
,
T. H.
,
1985
, “
Erosion of White Cast Irons and Satellite
,”
International Conference on Wear of Materials
,
ASME
,
New York
, pp.
677
686
.
23.
Seetharamu
,
S.
,
Sampathkumaran
,
P.
, and
Kumar
,
R. K.
,
1995
, “
Erosion Resistance of Permanent Moulded High Chromium Iron
,”
Wear
,
186–187 Part 1
, pp.
159
167
.
24.
McDonald
,
L. G.
, and
Kelley
,
J. E.
,
1994
, “
Erosive Wear of Potential Valve Materials for Coal-Conversion Plants
,” U.S. Department of the Interior,
Bureau of Mines, Report of Investigations No. 9490
.
25.
Lee
,
H. K.
,
2002
, “
A Study on Solid Particle Erosion Wear Characteristics of High Cr White Iron Hardfacing by Response Surface Method
,”
J. Korean Weld. Joining Soc.
,
20
(
4
), pp.
551
556
.
26.
Cousens
,
A. K.
, and
Hutchings
,
I. M.
,
1983
, “
Influence of Erodent Particle Shape on the Erosion of Mild Steel
,”
6th International Conference on Erosion by Liquid and Solid Impact
,
J. E.
Field
and
N. S.
Comey
, eds.,
Cavendish Laboratory, Cambridge University
,
Cambridge, UK
.
27.
Reddy
,
A. V.
, and
Sundararajan
,
G.
,
1986
, “
Erosion Behavior of Ductile Materials With a Spherical Non-Friable Erodent
,”
Wear
,
111
(
3
), pp.
313
323
.
28.
Oka
,
Y. I.
,
Mihara
,
S.
, and
Yoshida
,
T.
,
2009
, “
Impact-Angle Dependence and Estimation of Erosion Damage to Ceramic Materials Caused by Solid Particle Impact
,”
Wear
,
267
(1–4), pp.
129
135
.
29.
Chung
,
R. J.
,
Tang
,
X.
,
Li
,
D. Y.
,
Hinckley
,
B.
, and
Dolman
,
K.
,
2011
, “
Abnormal Erosion–Slurry Velocity Relationship of High Chromium Cast Iron With High Carbon Concentrations
,”
Wear
,
271
(9–10), pp.
1454
1461
.
30.
ASM
,
1973
,
Metals Handbook, Vol. 8: Metallography, Structure, Phase Diagrams
, T. Lyman, ed., American Society for Metals, Materials Park, OH.
31.
Abouel-Kasem
,
A.
,
Abd-Elrhman
,
Y. M.
,
Ahmed
,
S. M.
, and
Emara
,
K. M.
,
2010
, “
Design and Performance of Slurry Erosion Tester
,”
ASME J. Tribol.
,
132
(
2
), p.
021601
.
32.
Abouel-Kasem
,
A.
,
Al-Bukhaiti
,
M. A.
,
Ahmed
,
S. M.
, and
Emara
,
K. M.
,
2009
, “
Fractal Characterization of Slurry Eroded Surfaces at Different Impact Angles
,”
ASME J. Tribol.
,
131
(
3
), p.
031601
.
33.
Saleh
,
B.
, and
Ahmed
,
S. M.
,
2013
, “
Slurry Erosion–Corrosion of Carburized AISI 5117 Steel
,”
Tribol. Lett.
,
51
(
1
), pp.
135
142
.
You do not currently have access to this content.