The premise of the continuum damage mechanics (CDM) model for rolling contact fatigue (RCF) is based on the hypothesis that the damage mechanisms for torsion fatigue and rolling contact fatigue are equivalent. Mr. Lewis commented that the verification of this hypothesis has not been carried out within the paper. However, the reasoning behind such hypothesis has been explained in many papers authored by Sadeghi et al. [1–6]. For the readers' benefit, the explanation is provided here in brief.

In the case of subsurface-initiated RCF, cracks initiate in the region of maximum shear stress [3]. Figure 1 depicts the stress distribution for a loading pass at the depth of maximum shear stress for a 2D line contact under plane strain conditions. It can be seen that the shear stress, τxy, is the only component of stress that undergoes...

References

References
1.
Raje
,
N.
,
Sadeghi
,
F.
, and
Rateick
,
R. G.
, Jr.
,
2008
, “
A Statistical Damage Mechanics Model for Subsurface Initiated Spalling in Rolling Contacts
,”
ASME J. Tribol.
,
130
(
4
), p.
042201
.
2.
Jalalahmadi
,
B.
, and
Sadeghi
,
F.
,
2010
, “
A Voronoi FE Fatigue Damage Model for Life Scatter in Rolling Contacts
,”
ASME J. Tribol.
,
132
(
2
), p.
021404
.
3.
Slack
,
T.
, and
Sadeghi
,
F.
,
2010
, “
Explicit Finite Element Modeling of Subsurface Initiated Spalling in Rolling Contacts
,”
Tribol. Int.
,
43
(
9
), pp.
1693
1702
.
4.
Warhadpande
,
A.
,
Sadeghi
,
F.
,
Kotzalas
,
M. N.
, and
Doll
,
G.
,
2012
, “
Effects of Plasticity on Subsurface Initiated Spalling in Rolling Contact Fatigue
,”
Int. J. Fatigue
,
36
(
1
), pp.
80
95
.
5.
Weinzapfel
,
N.
, and
Sadeghi
,
F.
,
2013
, “
Numerical Modeling of Sub-Surface Initiated Spalling in Rolling Contacts
,”
Tribol. Int.
,
59
, pp.
210
221
.
6.
Bomidi
,
J. A.
, and
Sadeghi
,
F.
,
2014
, “
Three-Dimensional Finite Element Elastic–Plastic Model for Subsurface Initiated Spalling in Rolling Contacts
,”
ASME J. Tribol.
,
136
(
1
), p.
011402
.
7.
Littmann
,
W. E.
,
1969
, “
The Mechanism of Contact Fatigue
,” NASA Special Report No. SP-237.
8.
Lundberg
,
G.
, and
Palmgren
,
A.
,
1949
, “
Dynamic Capacity of Rolling Bearings
,”
ASME J. Appl. Mech.
,
16
(
2
), pp.
165
172
.
9.
Raje
,
N.
, and
Sadeghi
,
F.
,
2009
, “
Statistical Numerical Modelling of Sub-Surface Initiated Spalling in Bearing Contacts
,”
Proc. Inst. Mech. Eng., Part J
,
223
(
6
), pp.
849
858
.
10.
Styri
,
H.
,
1951
, “
Fatigue Strength of Ball Bearing Races and Heat-Treated 52100 Steel Specimens
,”
Proc. ASTM
,
51
, pp.
682
700
.
11.
Harris
,
T. A.
, and
Barnsby
,
R. M.
,
2001
, “
Life Ratings for Ball and Roller Bearings
,”
Proc. Inst. Mech. Eng., Part J
,
215
(
6
), pp.
577
595
.
12.
Weinzapfel
,
N. J.
,
2012
, “
Three-Dimensional Finite Element Modeling of Rolling Contact Fatigue
,” Ph.D. dissertation, Purdue University, West Lafayette, IN.
13.
Bomidi
,
J. A.
,
Weinzapfel
,
N.
,
Slack
,
T.
,
Moghaddam
,
S. M.
,
Sadeghi
,
F.
,
Liebel
,
A.
,
Weber
,
J.
, and
Kreis
,
T.
,
2013
, “
Experimental and Numerical Investigation of Torsion Fatigue of Bearing Steel
,”
ASME J. Tribol.
,
135
(
3
), p.
031103
.
14.
Shen
,
Y.
,
Moghadam
,
S. M.
,
Sadeghi
,
F.
,
Paulson
,
K.
, and
Trice
,
R. W.
,
2015
, “
Effect of Retained Austenite–Compressive Residual Stresses on Rolling Contact Fatigue Life of Carburized AISI 8620 Steel
,”
Int. J. Fatigue
,
75
, pp.
135
144
.
You do not currently have access to this content.