In the present work, the image features of cavitation erosion surfaces at different temperatures are extracted using wavelet decomposition transform. The results obtained indicate that the extract parameters, wavelet energy, and entropy can characterize the cavitation intensity in a similar manner to that of the mass loss and average particle size at different temperatures. Based on the analysis of the eroded surface and particle morphologies for different temperatures, it was found that the predominant failure mode was fatigue.
Issue Section:
Tribochemistry and Tribofilms
References
1.
Karrab
, S. A.
, Doheim
, M. A.
, Mohamed
, S.
, and Ahmed
, S. M.
, 2012
, “Study of Cavitation Erosion Pits on 1045 Carbon Steel Surface in Corrosive Waters
,” ASME J. Tribol.
, 134
(1
), p. 011602
.2.
Knapp
, R. T.
, Daily
, J. W.
, and Hammitt
, F. G.
, 1970
, Cavitation
, McGraw-Hill
, New York.
3.
Hammitt
, F. G.
, and Rogers
, D. O.
, 1970
, “Effects of Pressure and Temperature Variation in Vibratory Cavitation Damage Test
,” J. Mech. Eng. Sci.
, 12
(6
), pp. 432
–439
.4.
Garcia
, R.
, and Hammitt
, F. G.
, 1967
, “Cavitation Damage and Correlations With Material and Fluid Properties
,” ASME J. Basic Eng.
, 89
(4
), pp. 753
–763
.5.
Singer
, B. C.
, and Harvey
, S. J.
, 1979
, “Gas Content and Temperature Effects in Vibratory Cavitation Tests
,” Wear
, 52
(1
), pp. 147
–160
.6.
Iwai
, Y.
, Okada
, T.
, and Hammitt
, F. G.
, 1983
, “Effect of Temperature on the Cavitation Erosion of Cast Iron
,” Wear
, 85
(2
), pp. 181
–191
.7.
Zhou
, Y. K.
, Wang
, X.
, and Hammitt
, F. G.
, 1983
, “Vibratory Cavitation at Elevated Temperature
,” Wear
, 85
(3
), pp. 319
–329
.8.
Kwok
, C. T.
, Man
, H. C.
, and Leung
, L. K.
, 1997
, “Effect of Temperature, pH and Sulphide on the Cavitation Erosion Behaviour of Super Duplex Stainless Steel
,” Wear
, 211
(1
), pp. 84
–93
.9.
Li
, Z.
, Hana
, J.
, Lu
, J.
, Zhou
, J.
, and Chen
, J.
, 2014
, “Vibratory Cavitation Erosion Behavior of AISI 304 Stainless Steel in Water at Elevated Temperatures
,” Wear
, 321
, pp. 33
–37
.10.
Ahmed
, S. M.
, 1998
, “Investigation of the Temperature Effects on Induced Impact Pressure and Cavitation Erosion
,” Wear
, 218
(1
), pp. 119
–127
.11.
Abouel-Kasem
, A.
, Saleh
, B.
, Ezz El-Deen
, A.
, and Ahmed
, S. M.
, 2010
, “Investigation of Temperature Effects on Cavitation Erosion Behavior Based on Analysis of Erosion Particles
,” ASME J. Tribol.
, 132
(4
), p. 041601
.12.
Leith
, W. C.
, 1965
, “Prediction of Cavitation Damage in the Alkali Liquid Metals
,” Proc. Am. Soc. Test. Mater.
, 65
, pp. 789
–800
.13.
Plesset
, M. S.
, 1972
, “Temperature Effects in Cavitation Damage
,” ASME J. Basic Eng.
, 94
(3
), pp. 559
–566
.14.
Hammitt
, F. G.
, 1980
, Cavitation and Multiphase Flow Phenomena
, McGraw-Hill
, New York
.15.
ITT
C, 2005
, “The Specialist Committee on Cavitation Erosion on Propellers and Appendages on High Powered/High Speed Ships
,” Final Report and Recommendations to the 24th International Towing Tank Conference
, Vol. 2
, pp. 509
–542
.16.
ASTM,
2006
, “Standard Test Method for Cavitation Erosion Using Vibratory Apparatus
,” Annual Book of ASTM Standards
, Part 03.02, ASTM
, Philadelphia, PA
, Standard No. G32-06, pp. 98
–112
.17.
Ahmed
, S. M.
, Hokkirigawa
, K.
, Ito
, Y.
, and Oba
, R.
, 1991
, “Scanning Electron Microscopy Observation on the Incubation Period of Vibratory Cavitation Erosion
,” Wear
, 142
(2
), pp. 303
–314
.18.
Ahmed
, S. M.
, Hokkirigawa
, K.
, and Oba
, R.
, 1994
, “Fatigue Failure of SUS 304 Caused by Vibratory Cavitation Erosion
,” Wear
, 177
(2
), pp. 129
–137
.19.
Abouel-Kasem
, A.
, Emara
, K. M.
, and Ahmed
, S. M.
, 2009
, “Characterizing Cavitation Erosion Particles by Analysis of SEM Images
,” Trib. Int.
, 42
(1
), pp. 130
–136
.20.
Abouel-Kasem
, A.
, Saleh
, B.
, and Ahmed
, S. M.
, 2008
, “Quantitative Analysis of Cavitation Erosion Particle Morphology in Dilute Emulsions
,” ASME J. Tribol.
, 130
(4
), p. 041603
.21.
Abouel-Kasem
, A.
, Alturki
, F. A.
, and Ahmed
, S. M.
, 2011
, “Fractal Analysis of Cavitation Eroded Surface in Dilute Emulsions
,” ASME J. Tribol.
, 133
(4
), p. 041403
.22.
Alturki
, F. A.
, Abouel-Kasem
, A.
, and Ahmed
, S. M.
, 2012
, “Characteristics of Cavitation Erosion Using Image Processing Techniques
,” ASME J. Tribol.
, 135
(1
), p. 014502
.23.
Othman
, M.
, and Ahmed
, S. M.
, 2014
, “Investigation of Cavitation Damage Progress in the Incubation Period Using Stepwise Erosion and Image Process Techniques
,” J. Eng. Sci.
, 42
(3
), pp. 683
–702
.24.
Saleh
, B.
, Alkanhal
, T. A.
, and Ahmed
, S. M.
, 2013
, “Fractal Characterization of Cavitation Damage of Carburized AISI 5117 Steel
,” J. Eng. Sci.
, 41
(2
), pp. 517
–535
.25.
Materka
, A.
, and Strzelecki
, M.
, 1998
, “Texture Analysis Methods—A Review
,” Technical University of Lodz, Institute of Electronics, Brussels, Belgium, Report No. COST B11.26.
Huang
, K.
, and Aviyente
, S.
, 2008
, “Wavelet Feature Selection for Image Classification
,” IEEE Trans. Image Process.
, 17
(9
), pp. 1709
–1720
.27.
Mallat
, S.
, 1999
, A Wavelet Tour of Signal Processing
, Academic
, New York
.28.
ASTM
2009
, “Standard Test Method for Cavitation Erosion Using Vibratory Apparatus
,” Annual Book of ASTM Standards
, ASTM
, Philadelphia, PA
, ASTM Standard G 32-09.29.
Ahmed
, S. M.
, Hokkirigawa
, K.
, Oba
, R.
, and Kikuchi
, K.
, 1992
, “SEM Observation of Vibratory Cavitation Fracture-Mode During the Incubation Period and the Small Roughness Effect
,” JSME Int. J.
, 34
(3
), pp. 298
–303
.30.
Ahmed
, S. M.
, Hokkirigawa
, K.
, Kikuchi
, K.
, Matsudaira
, Y.
, Oshima
, R.
, and Oba
, R.
, 1990
, “Marked Surface-Roughness Effects on the Development of Microfracture During the Incubation Period of Vibratory Cavitation Erosion
,” Third Japan–China Joint Conference
, Osaka, Japan, pp. 331
–338
.31.
Vyas
, B.
, and Preece
, C. M.
, 1976
, “Stress Produced in a Solid by Cavitation
,” J. Appl. Phys.
, 47
(12
), pp. 5133
–5138
.32.
Abouel-Kasem
, A.
, and Ahmed
, S. M.
, 2008
, “Cavitation Erosion Mechanism Based on Analysis of Erosion Particles
,” ASME J. Tribol.
, 130
(3
), p. 031601
.33.
Vaidya
, S.
, and Preece
, C. M.
, 1978
, “Cavitation Erosion of Age-Hardenable-Aluminum Alloys
,” Metall. Trans. A
, 9A
, pp. 299
–307
.34.
Karrab
, S. A.
, Doheim
, M. A.
, Mohamed
, S.
, and Ahmed
, S. M.
, 2012
, “Examination of Cavitation Erosion Particles Morphology in Corrosive Waters
,” J. Eng. Sci
, 40
(6
), pp. 1793
–1814
.35.
Abouel-Kasem
, A.
, Ezz El-Deen
, A.
, Emara
, K. M.
, and Ahmed
, S. M.
, 2009
, “Investigation Into Cavitation Erosion Pits
,” ASME J. Tribol.
, 131
(3
), p. 031605
.36.
Abouel-Kasem
, A.
, and Ahmed
, S. M.
, 2012
, “Bubble Structures Between Two Walls in Ultrasonic Cavitation Erosion
,” ASME J. Tribol.
, 134
(2
), p. 021702
.37.
Pidaparti
, R. M.
, Aghazadeh
, B. S.
, Whitfield
, A.
, Rao
, A. S.
, and Mercier
, G. P.
, 2010
, “Classification of Corrosion Defects in NiAl Bronze Through Image Analysis
,” Corros. Sci.
, 52
(11
), pp. 3661
–3666
.Copyright © 2017 by ASME
You do not currently have access to this content.