Effects of groove textures on the performances for gaseous bubbles in the lubricant used for a textured journal bearing is studied under the consideration of thermal effect of lubricant. The Reynolds, energy, and Rayleigh–Plesset (RP) equations are solved simultaneously for simulating the behavior of the bubble. Numerical results show that the gaseous bubble radius shows a nonlinearly oscillation in a full cycle period, and high bubble pressure and temperature appear when the bubble collapses. Moreover, appropriately choosing groove length, width, or interval can reduce the maximum radius, collapse pressure, and collapse temperature of the bubble. There exists a critical groove depth minimizing the bubble pressure and temperature.

References

References
1.
Olver
,
A. V.
,
Fowell
,
M. T.
,
Spikes
,
H. A.
, and
Pegg
,
I. G.
,
2006
, “
'Inlet Suction: A Load Support Mechanism in Non-Convergent, Pocketed, Hydrodynamic Bearings
,”
Proc. Inst. Mech. Eng., Part J
,
220
(
2
), pp.
105
108
.
2.
Meng
,
F. M.
,
Wang
,
W. Z.
,
Hu
,
Y. Z.
, and
Wang
,
H.
,
2007
, “
Numerical Analysis of Combined Influences of Inter-Asperity Cavitation and Elastic Deformation on Flow Factors
,”
Proc. Inst. Mech. Eng., Part C
,
221
(
7
), pp.
815
827
.
3.
Meng
,
F. M.
,
Cen
,
S. Q.
,
Hu
,
Y. Z.
, and
Wang
,
H.
,
2009
, “
On Elastic Deformation, Inter-Asperity Cavitation and Lubricant Thermal Effects on Flow Factors
,”
Tribol. Int.
,
42
(
2
), pp.
260
274
.
4.
Shi
,
X.
, and
Ni
,
T.
,
2011
, “
Effects of Groove Textures on Fully Lubricated Sliding With Cavitation
,”
Tribol. Int.
,
44
(
12
), pp.
2022
2028
.
5.
Qiu
,
Y.
, and
Khonsari
,
M. M.
,
2011
, “
Experimental Investigation of Tribological Performance of Laser Textured Stainless Steel Rings
,”
Tribol. Int.
,
44
(
5
), pp.
635
644
.
6.
Zhang
,
J.
, and
Meng
,
Y.
,
2012
, “
Direct Observation of Cavitation Phenomenon and Hydrodynamic Lubrication Analysis of Textured Surfaces
,”
Tribol. Lett.
,
46
(
2
), pp.
147
158
.
7.
Shen
,
C.
, and
Khonsari
,
M. M.
,
2013
, “
On the Magnitude of Cavitation Pressure of Steady-State Lubrication
,”
Tribol. Lett.
,
51
(
1
), pp.
153
160
.
8.
Meng
,
F. M.
, and
Yang
,
T.
,
2013
, “
Preliminary Study on Mechanism of Cavitation in Lubricant of Textured Sliding Bearing
,”
Proc. Inst. Mech. Eng. Part J
,
227
(
7
), pp.
695
708
.
9.
Wang
,
L. L.
,
Lu
,
C. H.
, and
Ge
,
P. Q.
,
2014
, “
Theoretical and Experimental Study on the Cavitation Mechanism of a Low Viscosity Spiral Oil Wedge Journal Bearing
,”
Proc. Inst. Mech. Eng., Part J
,
228
(
9
), pp.
947
954
.
10.
Elrod
,
H.
,
1981
, “
A Cavitation Algorithm
,”
ASME J. Lubr. Technol.
,
103
(
3
), pp.
350
354
.
11.
Ausas
,
R.
,
Ragot
,
P.
,
Leiva
,
J.
,
Jai
,
M.
,
Bayada
,
G.
, and
Buscaglia
,
G. C.
,
2007
, “
The Impact of the Cavitation Model in the Analysis of Microtextured Lubricated Journal Bearings
,”
ASME J. Tribol.
,
129
(
4
), pp.
868
875
.
12.
Bayada
,
G.
, and
Chupin
,
L.
,
2013
, “
Compressible Fluid Model for Hydrodynamic Lubrication Cavitation
,”
ASME J. Tribol.
,
135
(
4
), p.
041702
.
13.
Grandoa
,
F. P.
,
Priesta
,
M.
, and
Prata
,
A. T.
,
2006
, “
A Two-Phase Flow Approach to Cavitation Modelling in Journal Bearings
,”
Tribol. Lett.
,
21
(
3
), pp.
233
244
.
14.
Plesset
,
M. S.
, and
Prosperetti
,
A.
,
1977
, “
Bubble Dynamics and Cavitation
,”
Ann. Rev. Fluid Mech.
,
9
(
1
), pp.
145
185
.
15.
Hilgenfeldt
,
S.
,
Brenner
,
M. P.
,
Grossmann
,
S.
, and
Lohse
,
D.
,
1998
, “
Analysis of Rayleigh-Plesset Dynamics for Sonoluminescing Bubbles
,”
J. Fluid Mech.
,
365
, pp.
171
204
.
16.
Katerina
,
F.
,
Vlasis
,
G. M.
, and
John
,
T.
,
2004
, “
Numerical Simulation of Bubble Growth in Newtonian and Viscoelastic Filaments Undergoing Stretching
,”
J. Non-Newton Fluid Mech.
,
122
(
1–3
), pp.
177
200
.
17.
Qin
,
Z.
,
Bremhorst
,
K.
,
Alehossein
,
H.
, and
Meyer
,
T.
,
2007
, “
Simulation of Cavitation Bubbles in a Convergent-Divergent Nozzle Water Jet
,”
J. Fluid Mech.
,
573
, pp.
1
25
.
18.
Wang
,
H.
, and
Zhu
,
B.
,
2010
, “
Numerical Prediction of Impact Force in Cavitating Flows
,”
ASME J. Fluids Eng.
,
132
(
10
), p.
101301
.
19.
Abdel-Maksoud
,
M.
,
Hanel
,
D.
, and
Lantermann
,
U.
,
2010
, “
Modeling and Computation of Cavitation in Vortical Flow
,”
Int. J. Heat Fluid Flow
,
31
(
6
), pp.
1065
1074
.
20.
Someya
,
T.
,
2003
, “
On the Development of Negative Pressure in Oil Film and the Characteristics of Journal Bearing
,”
Meccanica
,
38
(
6
), pp.
643
658
.
21.
Gehannin
,
J.
,
Arghir
,
M.
, and
Bonneau
,
O.
,
2009
, “
Evaluation of Rayleigh-Plesset Equation Based Cavitation Models for Squeeze Film Dampers
,”
ASME J. Tribol.
,
131
(
2
), p.
024501
.
22.
Geike
,
T.
, and
Popov
,
V.
,
2009
, “
Cavitation Within the Framework of Reduced Description of Mixed Lubrication
,”
Tribol. Int.
,
42
(
1
), pp.
93
98
.
23.
Boedo
,
S.
, and
Booker
,
J. F.
,
1995
, “
Cavitation in Normal Separation of Square and Circular Plates
,”
ASME J. Tribol.
,
117
(
3
), pp.
403
409
.
24.
Zhang
,
Z. M.
,
Zhang
,
Y. Y.
,
Xie
,
Y. B.
,
Cheng
,
Z. X.
,
Qiu
,
D. M.
, and
Zhu
,
J.
,
1986
,
Fluid Lubrication Theory for Sliding Bearings
,
Higher Education Press
,
Beijing
,
China
.
25.
Li
,
L.
,
He
,
Y.
,
Wu
,
Y. X.
, and
Zou
,
W. H.
,
2013
, “
Experimental Measurements and Correlations Isobaric Vapor-Liquid Equilibrium for Water Plus Acetic Acid Plus Sec-butyl Acetate at 101.3 kPa
,”
Chin. J. Chem. Eng.
,
21
(
7
), pp.
759
765
.
26.
Yang
,
P. R.
,
1998
,
Numerical Analysis of Fluid Lubrication
,
National Defense Industry Press
,
Beijing, China
.
27.
Etsion
,
I.
, and
Ludwig
,
L. P.
,
1982
, “
Observation of Pressure Variation in the Cavitation Region of Submerged Journal Bearings
,”
ASME J. Lubr. Technol.
,
104
(
2
), pp.
157
163
.
You do not currently have access to this content.