A liquid film can flow between two solid surfaces in close proximity due to capillary effects. Such flow occurs in natural processes such as the wetting of soils, drainage through rocks, water rise in plants and trees, as well as in engineering applications such as liquid flow in nanofluidic systems and the development of liquid bridges within small-scale devices. In this work, a numerical model is formulated to describe the radial capillary-driven flow between two contacting, elastic, annular rough surfaces. A mixed lubrication equation with capillary-pressure boundary conditions is solved for the pressure within the liquid film and both macro- and micro-contact models are employed to account for solid–solid contact pressures and interfacial deformation. Measurements of interfacial spreading rate are performed for liquids of varying viscosity flowing between an optical flat and a metallic counter surface. Good agreement is found between modeling and experiment. A semi-analytical relation is developed for the capillary flow between the two contacting surfaces.

References

1.
Tyree
,
M. T.
,
2003
, “
Plant Hydraulics: The Ascent of Water
,”
Nature
,
423
(
6943
), p.
923
.
2.
Fredlund
,
D. G.
, and
Rahardjo
,
H.
,
1993
,
Soil Mechanics for Unsaturated Soils
,
Wiley
, New York.
3.
Maboudian
,
R.
, and
Howe
,
R. T.
,
1997
, “
Critical Review: Adhesion in Surface Micromechanical Structures
,”
J. Vac. Sci. Technol. B
,
15
(
1
), pp.
1
20
.
4.
Maboudian
,
R.
,
1998
, “
Surface Processes in MEMS Technology
,”
Surf. Sci. Rep.
,
30
(
6
), pp.
207
269
.
5.
Komvopoulos
,
K.
,
2003
, “
Adhesion and Friction Forces in Microelectromechanical Systems: Mechanisms, Measurement, Surface Modification Techniques, and Adhesion Theory
,”
J. Adhes. Sci. Technol.
,
17
(
4
), pp.
477
517
.
6.
van Spengen
,
W. M.
,
2003
, “
MEMS Reliability From a Failure Mechanisms Perspective
,”
Microelectron. Reliab.
,
43
(
7
), pp.
1049
1060
.
7.
Raccurt
,
O.
,
Tardif
,
F.
,
d'Avitaya
,
F. A.
, and
Vareine
,
T.
,
2004
, “
Influence of Liquid Surface Tension on Stiction of SOI MEMS
,”
J. Micromech. Microeng.
,
14
(
7
), pp.
1083
1090
.
8.
Koppaka
,
S. B.
, and
Phinney
,
L. M.
,
2005
, “
Release Processing Effects on Laser Repair of Stiction-Failed Microcantilevers
,”
J. Microelectromech. Syst.
,
14
(
2
), pp.
410
418
.
9.
Wu
,
D.
,
Fang
,
N.
,
Sun
,
C.
, and
Zhang
,
X.
,
2006
, “
Stiction Problems in Releasing of 3D Microstructures and Its Solution
,”
Sens. Actuators A
,
128
(
1
), pp.
109
115
.
10.
Maboudian
,
R.
, and
Carraro
,
C.
,
2004
, “
Surface Chemistry and Tribology of MEMS
,”
Annu. Rev. Phys. Chem.
,
55
(
1
), pp.
35
54
.
11.
Zhu
,
L.
,
Xu
,
J.
,
Zhang
,
Z.
,
Hess
,
D. W.
, and
Wong
,
C.
,
2005
, “
Lotus Effect Surface for Prevention of Microelectromechanical System (MEMS) Stiction
,”
Electronic Components and Technology Conference
, pp.
1798
1801
.
12.
Zhu
,
L.
,
Xu
,
J.
,
Zhang
,
Z.
,
Hess
,
D. W.
, and
Wong
,
C.
,
2006
, “
Optimizing Geometrical Design of Superhydrophobic Surfaces for Prevention of Microelectromechanical System (MEMS) Stiction
,”
Electronic Components and Technology Conference
, pp.
1
7
.
13.
Hariri
,
A.
,
Zu
,
J.
, and
Ben Mrad
,
R.
,
2007
, “
Modeling of Wet Stiction in Microelectromechanical Systems (MEMS)
,”
J. Microelectromech. Syst.
,
16
(
5
), pp.
1276
1285
.
14.
Sammoura
,
F.
,
Hancer
,
M.
, and
Yang
,
K.
,
2011
, “
The Effect of Surface Chemistry on MEMS Stiction in an Ultralow-Humidity Environment
,”
J. Microelectromech. Syst.
,
20
(
2
), pp.
522
526
.
15.
Liu
,
C.
,
Chou
,
B. C.
,
Tsai
,
R. C. F.
,
Shen
,
N. Y.
,
Chen
,
B. S.
,
Cheng
,
E. C.
,
Tuan
,
H. C.
,
Kalnitsky
,
A.
,
Cheng
,
S.
, and
Lin
,
C. H.
,
2011
, “
MEMS Technology Development and Manufacturing in a CMOS Foundry
,”
16th International Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS)
, pp.
807
810
.
16.
Tas
,
N. R.
,
Mela
,
P.
,
Kramer
,
T.
,
Berenschot
,
J.
, and
van den Berg
,
A.
,
2003
, “
Capillarity Induced Negative Pressure of Water Plugs in Nanochannels
,”
Nano Lett.
,
3
(
11
), pp.
1537
1540
.
17.
Mukhopadhyay
,
S.
,
Roy
,
S. S.
,
D'Sa
,
R. A.
,
Mathur
,
A.
,
Holmes
,
R. J.
, and
McLaughlin
,
J. A.
,
2011
, “
Nanoscale Surface Modifications to Control Capillary Flow Characteristics in PMMA Microfluidic Devices
,”
Nanoscale Res. Lett.
,
6
(
1
), pp.
1
12
.
18.
Aristoff
,
J. M.
,
Duprat
,
C.
, and
Stone
,
H. A.
, “
Elastocapillary Imbibition
,”
Int. J. Non-Linear Mech.
,
46
(
4
), pp.
648
656
.
19.
Washburn
,
E. W.
,
1921
, “
The Dynamics of Capillary Flow
,”
Phys. Rev.
,
17
(
3
), pp.
273
–283.
20.
Fisher
,
L. R.
, and
Lark
,
P. D.
,
1979
, “
An Experimental Study of the Washburn Equation for Liquid Flow in Very Fine Capillaries
,”
J. Colloid Interface Sci.
,
69
(
3
), pp.
486
492
.
21.
Van Honschoten
,
J.
,
Escalante
,
M.
,
Tas
,
N.
,
Jansen
,
H.
, and
Elwenspoek
,
M.
,
2007
, “
Elastocapillary Filling of Deformable Nanochannels
,”
J. Appl. Phys.
,
101
(
9
), p.
094310
.
22.
Van Honschoten
,
J.
,
Escalante
,
M.
,
Tas
,
N.
, and
Elwenspoek
,
M.
,
2009
, “
Formation of Liquid Menisci in Flexible Nanochannels
,”
J. Colloid Interface Sci.
,
329
(
1
), pp.
133
139
.
23.
Dimitrov
,
D.
,
Milchev
,
A.
, and
Binder
,
K.
,
2007
, “
Capillary Rise in Nanopores: Molecular Dynamics Evidence for the Lucas–Washburn Equation
,”
Phys. Rev. Lett.
,
99
(
5
), p.
054501
.
24.
Bhushan
,
B.
, and
Dugger
,
M.
,
1990
, “
Liquid-Mediated Adhesion at the Thin Film Magnetic Disk/Slider Interface
,”
ASME J. Tribol.
,
112
(
2
), pp.
217
223
.
25.
Grobelny
,
J.
,
Pradeep
,
N.
,
Kim
,
D. I.
, and
Ying
,
Z. C.
,
2006
, “
Quantification of the Meniscus Effect in Adhesion Force Measurements
,”
Appl. Phys. Lett.
,
88
(
9
), p.
091906
.
26.
Yang
,
S. H.
,
Nosonovsky
,
M.
,
Zhang
,
H.
, and
Chung
,
K. H.
,
2008
, “
Nanoscale Water Capillary Bridges Under Deeply Negative Pressure
,”
Chem. Phys. Lett.
,
451
(
1
), pp.
88
92
.
27.
Yang
,
S.
,
Zhang
,
H.
,
Nosonovsky
,
M.
, and
Chung
,
K. H.
,
2008
, “
Effects of Contact Geometry on Pull-Off Force Measurements With a Colloidal Probe
,”
Langmuir
,
24
(
3
), pp.
743
748
.
28.
Nosonovsky
,
M.
, and
Bhushan
,
B.
,
2008
, “
Capillary Effects and Instabilities in Nanocontacts
,”
Ultramicroscopy
,
108
(
10
), pp.
1181
1185
.
29.
Rabinovich
,
Y. I.
,
Esayanur
,
M. S.
,
Johanson
,
K. D.
,
Adler
,
J. J.
, and
Moudgil
,
B. M.
,
2002
, “
Measurement of Oil-Mediated Particle Adhesion to a Silica Substrate by Atomic Force Microscopy
,”
J. Adhes. Sci. Technol.
,
16
(
7
), pp.
887
903
.
30.
Rabinovich
,
Y. I.
,
Adler
,
J. J.
,
Esayanur
,
M. S.
,
Ata
,
A.
,
Singh
,
R. K.
, and
Moudgil
,
B. M.
,
2002
, “
Capillary Forces Between Surfaces With Nanoscale Roughness
,”
Adv. Colloid Interface Sci.
,
96
(
1
), pp.
213
230
.
31.
Rabinovich
,
Y. I.
,
Esayanur
,
M. S.
, and
Moudgil
,
B. M.
,
2005
, “
Capillary Forces Between Two Spheres With a Fixed Volume Liquid Bridge: Theory and Experiment
,”
Langmuir
,
21
(
24
), pp.
10992
10997
.
32.
Tian
,
H.
, and
Matsudaira
,
T.
,
1993
, “
The Role of Relative Humidity, Surface Roughness and Liquid Build-Up on Static Friction Behavior of the Head/Disk Interface
,”
ASME J. Tribol.
,
115
(
1
), pp.
28
35
.
33.
Erle
,
M. A.
,
Dyson
,
D.
, and
Morrow
,
N. R.
,
1971
, “
Liquid Bridges Between Cylinders, in a Torus, and Between Spheres
,”
AIChE J0
,
17
(
1
), pp.
115
121
.
34.
Zheng
,
J.
, and
Streator
,
J. L.
,
2003
, “
A Micro-Scale Liquid Bridge Between Two Elastic Spheres: Deformation and Stability
,”
Tribol. Lett.
,
15
(
4
), pp.
453
464
.
35.
Zheng
,
J.
, and
Streator
,
J. L.
,
2004
, “
A Liquid Bridge Between Two Elastic Half-Spaces: A Theoretical Study of Interface Instability
,”
Tribol. Lett.
,
16
(
1–2
), pp.
1
9
.
36.
Megias-Alguacil
,
D.
, and
Gauckler
,
L. J.
,
2009
, “
Capillary Forces Between Two Solid Spheres Linked by a Concave Liquid Bridge: Regions of Existence and Forces Mapping
,”
AIChE J.
,
55
(
5
), pp.
1103
1109
.
37.
Matthewson
,
M.
,
1988
, “
Adhesion of Spheres by Thin Liquid Films
,”
Philos. Mag. A
,
57
(
2
), pp.
207
216
.
38.
Matthewson
,
M.
, and
Mamin
,
H.
,
1988
, “
Liquid Mediated Adhesion of Ultra-Flat Solid Surfaces
,”
MRS Proceedings
,
Cambridge University Press
, Vol.
119
, pp.
87
92
.
39.
Poon
,
C. Y.
, and
Bhushan
,
B.
,
1996
, “
Numerical Contact and Stiction Analyses of Gaussian Isotropic Surfaces for Magnetic Head Slider/Disk Contact
,”
Wear
,
202
(
1
), pp.
68
82
.
40.
Tian
,
X.
, and
Bhushan
,
B.
,
1996
, “
The Micro-Meniscus Effect of a Thin Liquid Film on the Static Friction of Rough Surface Contact
,”
J. Phys. D: Appl. Phys.
,
29
(
1
), pp.
163
178
.
41.
Streator
,
J. L.
,
2002
, “
A Model of Mixed Lubrication With Capillary Effects
,” Proceedings of the 28th Leeds-Lyon Symposium on Tribology: Boundary and Mixed Lubrication, Science and Applications, Vienna, Austria, Sept. 4–7, 2001,
Tribol. Ser.
,
40
, pp.
121
128
.
42.
Persson
,
B.
,
2008
, “
Capillary Adhesion Between Elastic Solids With Randomly Rough Surfaces
,”
J. Phys.: Condens. Matter
,
20
(
31
), p.
315007
.
43.
Streator
,
J. L.
, and
Jackson
,
R. L.
,
2009
, “
A Model for the Liquid-Mediated Collapse of 2-D Rough Surfaces
,”
Wear
,
267
(
9
), pp.
1436
1445
.
44.
Streator
,
J. L.
,
2009
, “
A Model of Liquid-Mediated Adhesion With a 2D Rough Surface
,”
Tribol. Int.
,
42
(
10
), pp.
1439
1447
.
45.
Rostami
,
A.
, and
Streator
,
J. L.
,
2015
, “
Study of Liquid-Mediated Adhesion Between 3D Rough Surfaces: A Spectral Approach
,”
Tribol. Int.
,
84
, pp.
36
47
.
46.
Rostami
,
A.
, and
Streator
,
J. L.
,
2015
, “
A Deterministic Approach to Studying Liquid-Mediated Adhesion Between Rough Surfaces
,”
Tribol. Lett.
,
58
(
1
), pp.
1
13
.
47.
Adamson
,
A. W.
, and
Gast
,
A. P.
,
1967
,
Physical Chemistry of Surfaces
, Wiley, New York.
48.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University Press
, New York.
49.
Hamrock
,
B. J.
,
Schmid
,
S. R.
, and
Jacobson
,
B. O.
,
2004
,
Fundamentals of Fluid Film Lubrication
,
Marcel Dekker
, New York.
50.
Patir
,
N.
, and
Cheng
,
H.
,
1978
, “
An Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication
,”
ASME J. Tribol.
,
100
(
1
), pp.
12
17
.
51.
Bathe
,
K. J.
, and
Wilson
,
E. L.
,
1976
,
Numerical Methods in Finite Element Analysis
, Prentice Hall, Upper Saddle River, NJ.
52.
Jackson
,
R. L.
, and
Streator
,
J. L.
,
2006
, “
A Multi-Scale Model for Contact Between Rough Surfaces
,”
Wear
,
261
(
11
), pp.
1337
1347
.
53.
Garcia
,
N.
, and
Stoll
,
E.
,
1984
, “
Monte Carlo Calculation for Electromagnetic-Wave Scattering From Random Rough Surfaces
,”
Phys. Rev. Lett.
,
52
(
20
), pp.
1798
1801
.
54.
Green
,
C. K.
,
Streator
,
J. L.
,
Haynes
,
C.
, and
Lara-Curzio
,
E.
,
2011
, “
A Computational Leakage Model for Solid Oxide Fuel Cell Compressive Seals
,”
J. Fuel Cell Sci. Technol.
,
8
(
4
), p.
041003
.
55.
Johnson
,
K. L.
,
Greenwood
,
J. A.
, and
Higginson
,
J. G.
,
1985
, “
The Contact of Elastic Regular Wavy Surfaces
,”
Int. J. Mech. Sci.
,
27
(
6
), pp.
383
396
.
56.
Rostami
,
A.
, and
Jackson
,
R. L.
,
2013
, “
Predictions of the Average Surface Separation and Stiffness Between Contacting Elastic and Elastic–Plastic Sinusoidal Surfaces
,”
Proc. Inst. Mech. Eng., Part J
,
227
(
12
), pp.
1376
1385
.
You do not currently have access to this content.