In this study, the effect of flow velocity (4–7.5 m s−1) and impact angle (30–90 deg) on erosion–corrosion behavior of chromium carbide coating was investigated under impingement by silica containing NaCl solution. Chromium carbide coating was deposited on low carbon steel by thermal reactive deposition/diffusion method at 1050 °C for 12 h in a molten salt bath. Mass loss measurement and potentiodynamic polarization tests were employed in order to determine coating performance under impingement. Polarization curves showed that the coated samples had less corrosion current density and high chemical stability. High mass loss at low impact angle indicated ductile behavior for the uncoated sample, while the mass loss for the coated sample changes less than 30% with impact angle up to 60 deg. Furthermore, the erosion–corrosion behavior of the coated sample was slightly dependent on flow velocity. Scanning electron micrographs showed that at lower impact angle, the Cr7C3 coating eroded with flake fragmentation mechanism, while at high impact angle, fatigue fracture is the main degradation mechanism.

References

1.
Stack
,
M.
, and
Jana
,
B.
,
2011
, “
Models and Mechanisms of Erosion–Corrosion in Metals
,”
Tribocorrosion of Passive Metals and Coatings
,
Woodhead Publishing
,
Cambridge, UK
, pp.
153
184
.
2.
Neville
,
A.
,
Reza
,
F.
,
Chiovelli
,
S.
, and
Revega
,
T.
,
2005
, “
Erosion–Corrosion Behaviour of WC-Based MMCs in Liquid–Solid Slurries
,”
Wear
,
259
(1–6), pp.
181
195
.
3.
Yang
,
Y.
, and
Cheng
,
Y.
,
2012
, “
Parametric Effects on the Erosion–Corrosion Rate and Mechanism of Carbon Steel Pipes in Oil Sands Slurry
,”
Wear
,
276–277
, pp.
141
148
.
4.
Wang
,
Y.
,
Zheng
,
Y. G.
,
Ke
,
W.
,
Sun
,
W. H.
,
Hou
,
W. L.
,
Chang
,
X. C.
, and
Wang
,
J. Q.
,
2011
, “
Slurry Erosion–Corrosion Behaviour of High-Velocity Oxy-Fuel (HVOF) Sprayed Fe-Based Amorphous Metallic Coatings for Marine Pump in Sand-Containing NaCl Solutions
,”
Corros. Sci.
,
53
(
10
), pp.
3177
3185
.
5.
Zheng
,
Z.
,
Zheng
,
Y.
,
Sun
,
W.
, and
Wang
,
J.
,
2013
, “
Erosion–Corrosion of HVOF-Sprayed Fe-Based Amorphous Metallic Coating Under Impingement by a Sand-Containing NaCl Solution
,”
Corros. Sci.
,
76
, pp.
337
347
.
6.
Hussainova
,
I.
,
Jasiuk
,
I.
,
Sardela
,
M.
, and
Antonov
,
M.
,
2009
, “
Micromechanical Properties and Erosive Wear Performance of Chromium Carbide Based Cermets
,”
Wear
,
267
(1–4), pp.
152
159
.
7.
Hu
,
X.
,
Alzawai
,
K.
,
Gnanavelu
,
A.
,
Neville
,
A.
,
Wang
,
C.
,
Crossland
,
A.
, and
Martin
,
J.
,
2011
, “
Assessing the Effect of Corrosion Inhibitor on Erosion–Corrosion of API-5L-X65 in Multi-Phase Jet Impingement Conditions
,”
Wear
,
271
(
9
), pp.
1432
1437
.
8.
Neville
,
A.
, and
Wang
,
C.
,
2009
, “
Erosion–Corrosion Mitigation by Corrosion Inhibitors—An Assessment of Mechanisms
,”
Wear
,
267
(1–4), pp.
195
203
.
9.
Kleis
,
I.
, and
Kulu
,
P.
,
2008
,
Solid Particle Erosion Occurrence, Prognosification and Control
,
Springer
,
Berlin
.
10.
Giourntas
,
L.
,
Hodgkiess
,
T.
, and
Galloway
,
A.
,
2015
, “
Comparative Study of Erosion–Corrosion Performance on a Range of Stainless Steels
,”
Wear
,
332–333
, pp.
1051
1058
.
11.
Caicedo
,
J.
,
Cabrera
,
G.
,
Caicedo
,
H.
, and
Aperador
,
W.
,
2012
, “
A Comparative Study of Corrosive-Erosive Effects at AISI D3 Steel, 304 Stainless Steel and CrN/AlN Material
,”
Open Mater. Sci. J.
,
6
(
1
), pp.
14
21
.
12.
Lopez
,
D.
,
Sánchez
,
C.
, and
Toro
,
A.
,
2005
, “
Corrosion–Erosion Behavior of TiN-Coated Stainless Steels in Aqueous Slurries
,”
Wear
,
258
(
1–4
), pp.
684
692
.
13.
Purandare
,
Y.
,
Stack
,
M.
, and
Hovsepian
,
P. E.
,
2006
, “
Velocity Effects on Erosion–Corrosion of CrN/NbN ‘Superlattice' PVD Coatings
,”
Surf. Coat. Technol.
,
201
(1–2), pp.
361
370
.
14.
Saha
,
G.
,
Khan
,
T.
, and
Zhang
,
G.
,
2011
, “
Erosion–Corrosion Resistance of Microcrystalline and Near-Nanocrystalline WC–17Co High Velocity Oxy-Fuel Thermal Spray Coatings
,”
Corros. Sci.
,
53
(
6
), pp.
2106
2114
.
15.
Chen
,
F.-S.
,
Lee
,
P.-Y.
, and
Yeh
,
M.-C.
,
1998
, “
Thermal Reactive Deposition Coating of Chromium Carbide on Die Steel in a Fluidized Bed Furnace
,”
Mater. Chem. Phys.
,
53
(
1
), pp.
19
27
.
16.
Espallargas
,
N.
,
Berget
,
J.
,
Guilemany
,
J.
,
Benedetti
,
A.
, and
Suegama
,
P.
,
2008
, “
Cr3C2–NiCr and WC–Ni Thermal Spray Coatings as Alternatives to Hard Chromium for Erosion–Corrosion Resistance
,”
Surf. Coat. Technol.
,
202
(
8
), pp.
1405
1417
.
17.
Sen
,
S.
,
2005
, “
A Study on Kinetics of CrxC-Coated High-Chromium Steel by Thermo-Reactive Diffusion Technique
,”
Vacuum
,
79
(1–2), pp.
63
70
.
18.
Stack
,
M.
,
Antonov
,
M.
, and
Hussainova
,
I.
,
2006
, “
Some Views on the Erosion–Corrosion Response of Bulk Chromium Carbide Based Cermets
,”
J. Phys. D: Appl. Phys.
,
39
(
15
), p.
3165
.
19.
Wang
,
B. Q.
, and
Shui
,
Z. R.
,
2002
, “
The Hot Erosion Behavior of HVOF Chromium Carbide-Metal Cermet Coatings Sprayed With Different Powders
,”
Wear
,
253
(5–6), pp.
550
557
.
20.
Yaghtin
,
A.
,
Salahinejad
,
E.
,
Khosravifard
,
A.
,
Araghi
,
A.
, and
Akhbarizadeh
,
A.
,
2015
, “
Corrosive Wear Behavior of Chromium Carbide Coatings Deposited by Air Plasma Spraying
,”
Ceram. Int.
,
41
(
6
), pp.
7916
7920
.
21.
Arai
,
T.
, and
Moriyama
,
S.
,
1995
, “
Growth Behavior of Chromium Carbide and Niobium Carbide Layers on Steel Substrate, Obtained by Salt Bath Immersion Coating Process
,”
Thin Solid Films
,
259
(
2
), pp.
174
180
.
22.
Czichos
,
H.
,
1978
,
Tribology: A Systems Approach to the Science and Technology of Friction, Lubrication and Wear
,
Elsevier Scientific Publishing
,
Amsterdam
,
The Netherlands
, p.
414
.
23.
Fesahat
,
M.
,
Soltanieh
,
M.
, and
Eivani
,
A. R.
,
2016
, “
Effect of Plasma Nitriding on Nanostructure of TRD Coating
,”
Surf. Eng.
,
32
(
8
), pp.
1
7
.
24.
Hakami
,
F.
,
Sohi
,
M. H.
,
Ghani
,
J. R.
, and
Ebrahimi
,
M.
,
2011
, “
Chromizing of Plasma Nitrided AISI 1045 Steel
,”
Thin Solid Films
,
519
(
20
), pp.
6783
6786
.
25.
Lee
,
S. Y.
, and
Kang
,
S.-S.
,
1999
, “
Effect of Plasma Nitriding on the Surface Properties of the Chromium Diffusion Coating Layer in Iron-Base Alloys
,”
Surf. Coat. Technol.
,
116–119
, pp.
391
397
.
26.
Zarchi
,
H. K.
,
Jalaly
,
M.
,
Soltanieh
,
M.
, and
Mehrjoo
,
H.
,
2009
, “
Comparison of the Activation Energies of the Formation of Chromium Carbide Coating on Carburized and Uncarburized AISI 1020 Steel
,”
Steel Res. Int.
,
80
(
11
), pp.
859
864
.
27.
Zheng
,
Z.
,
Zheng
,
Y.
,
Zhou
,
X.
,
He
,
S.
,
Sun
,
W.
, and
Wang
,
J.
,
2014
, “
Determination of the Critical Flow Velocities for Erosion–Corrosion of Passive Materials Under Impingement by NaCl Solution Containing Sand
,”
Corros. Sci.
,
88
, pp.
187
196
.
28.
Stack
,
M.
, and
Abdulrahman
,
G.
,
2010
, “
Mapping Erosion-Corrosion of Carbon Steel in Oil Exploration Conditions: Some New Approaches to Characterizing Mechanisms and Synergies
,”
Tribol. Int.
,
43
(
7
), pp.
1268
1277
.
29.
Hutchings
,
I. M.
,
1992
, “
Ductile-Brittle Transitions and Wear Maps for the Erosion and Abrasion of Brittle Materials
,”
J. Phys. D: Appl. Phys.
,
25
(
1A
), p.
A212
.
30.
Al-Bukhaiti
,
M.
,
Ahmed
,
S.
,
Badran
,
F.
, and
Emara
,
K.
,
2007
, “
Effect of Impingement Angle on Slurry Erosion Behaviour and Mechanisms of 1017 Steel and High-Chromium White Cast Iron
,”
Wear
,
262
(
9–10
), pp.
1187
1198
.
31.
Burstein
,
G.
, and
Sasaki
,
K.
,
2000
, “
Effect of Impact Angle on the Slurry Erosion–Corrosion of 304L Stainless Steel
,”
Wear
,
240
(
1–2
), pp.
80
94
.
32.
Arabnejad
,
H.
,
Mansouri
,
A.
,
Shirazi
,
S.
, and
McLaury
,
B.
,
2015
, “
Development of Mechanistic Erosion Equation for Solid Particles
,”
Wear
,
332–333
, pp.
1044
1050
.
33.
Stachowiak
,
G.
, and
Batchelor
,
A. W.
,
2013
,
Engineering Tribology
,
Butterworth-Heinemann
,
Oxford, U
K.
34.
Wan
,
W.
,
Xiong
,
J.
,
Guo
,
Z.
,
Tang
,
L.
, and
Du
,
H.
,
2015
, “
Research on the Contributions of Corrosion, Erosion and Synergy to the Erosion–Corrosion Degradation of Ti (C, N)-Based Cermets
,”
Wear
,
326–327
, pp.
36
43
.
35.
Madsen
,
B. W.
,
1988
, “
Measurement of Erosion-Corrosion Synergism With a Slurry Wear Test Apparatus
,”
Wear
,
123
(
2
), pp.
127
142
.
36.
Yang
,
Q.
,
Seo
,
D.
,
Zhao
,
L.
, and
Zeng
,
X.
,
2004
, “
Erosion Resistance Performance of Magnetron Sputtering Deposited TiAlN Coatings
,”
Surf. Coat. Technol.
,
188–189
, pp.
168
173
.
37.
Xiao
,
B.
,
Xing
,
J. D.
,
Feng
,
J.
,
Li
,
Y. F.
,
Zhou
,
C. T.
,
Su
,
W.
,
Xie
,
X. J.
, and
Chen
,
Y. H.
,
2008
, “
Theoretical Study on the Stability and Mechanical Property of Cr7C3
,”
Phys. B
,
403
(
13–16
), pp.
2273
2281
.
38.
Levy
,
A. V.
,
1988
, “
The Erosion-Corrosion Behavior of Protective Coatings
,”
Surf. Coat. Technol.
,
36
(
1–2
) pp.
387
406
.
You do not currently have access to this content.