This work deals with optimization of axially magnetized stack structured permanent magnet (PM) thrust bearing using generalized three-dimensional (3D) mathematical model having “n” number of ring pairs. The stack structured PM thrust bearing is optimized for the maximum axial force and stiffness in a given cylindrical volume. matlab codes are written to solve the developed equations for optimization of geometrical parameters (axial offset, number of ring pairs, air gap, and inner radius of inner and outer rings). Further, the results of proposed optimization method are validated using finite element analysis (FEA) and further, generalized by establishing the relationship between optimal design variables and air gap pertaining to cylindrical volume constraint of bearing's outer diameter. Effectiveness of the proposed method is demonstrated by optimizing PM thrust bearing in a given cylindrical volume. Mathematical model with optimized geometrical parameters dealt in the present work helps the designer in developing PM thrust bearings effectively and efficiently for variety of applications.

References

References
1.
Sotelo
,
G. G.
,
Andrade
,
R.
, and
Ferreira
,
A. C.
,
2007
, “
Magnetic Bearing Sets for a Flywheel System
,”
IEEE Trans. Appl. Supercond.
,
17
(
2
), pp.
2150
2153
.
2.
Fang
,
J.
,
Le
,
Y.
,
Sun
,
J.
, and
Wang
,
K.
,
2012
, “
Analysis and Design of Passive Magnetic Bearing and Damping System for High-Speed Compressor
,”
IEEE Trans. Magn.
,
48
(
9
), pp.
2528
2537
.
3.
Bekinal
,
S. I.
,
Anil
,
T. R.
,
Kulkarni
,
S. S.
, and
Jana
,
S.
,
2014
, “
Hybrid Permanent Magnet and Foil Bearing System for Complete Passive Levitation of Rotor
,”
10th International Conference on Vibration Engineering and Technology of Machinery
, Sept. 9–11, University of Manchester, Manchester, UK, pp.
939
949
.
4.
Yonnet
,
J. P.
,
1978
, “
Passive Magnetic Bearings With Permanent Magnets
,”
IEEE Trans. Magn.
,
14
(
5
), pp.
803
805
.
5.
Yonnet
,
J. P.
,
1981
, “
Permanent Magnetic Bearings and Couplings
,”
IEEE Trans. Magn.
,
17
(
1
), pp.
1169
1173
.
6.
Delamare
,
J.
,
Rulliere
,
E.
, and
Yonnet
,
J. P.
,
1995
, “
Classification and Synthesis of Permanent Magnet Bearing Configurations
,”
IEEE Trans. Magn.
,
31
(
6
), pp.
4190
4192
.
7.
Paden
,
B.
,
Groom
,
N.
, and
Antaki
,
J.
,
2003
, “
Design Formulas for Permanent-Magnet Bearings
,”
ASME J. Mech. Des.
,
125
(
4
), pp.
734
739
.
8.
Samanta
,
P.
, and
Hirani
,
H.
,
2008
, “
Magnetic Bearing Configurations: Theoretical and Experimental Studies
,”
IEEE Trans. Magn.
,
44
(
2
), pp.
292
300
.
9.
Ravaud
,
R.
,
Lemarquand
,
G.
, and
Lemarquand
,
V.
,
2009
, “
Force and Stiffness of Passive Magnetic Bearings Using Permanent Magnets—Part 1: Axial Magnetization
,”
IEEE Trans. Magn.
,
45
(
7
), pp.
2996
3002
.
10.
Bekinal
,
S. I.
,
Anil
,
T. R.
, and
Jana
,
S.
,
2012
, “
Analysis of Axially Magnetized Permanent Magnet Bearing Characteristics
,”
Prog. Electromagn. Res. B
,
44
, pp.
327
343
.
11.
Bekinal
,
S. I.
,
Anil
,
T. R.
,
Jana
,
S.
,
Kulkarni
,
S. S.
,
Sawant
,
A.
,
Patil
,
N.
, and
Dhond
,
S.
,
2013
, “
Permanent Magnet Thrust Bearing: Theoretical and Experimental Results
,”
Prog. Electromagn. Res. B
,
56
, pp.
269
287
.
12.
Yonnet
,
J. P.
,
Lemarquand
,
G.
,
Hemmerlin
,
S.
, and
Rulliere
,
E. O.
,
1991
, “
Stacked Structures of Passive Magnetic Bearings
,”
J. Appl. Phys.
,
70
(
10
), pp.
6633
6635
.
13.
Tian
,
L.
,
Ai
,
X.-P.
, and
Tian
,
Y.
,
2012
, “
Analytical Model of Magnetic Force for Axial Stack Permanent-Magnet Bearings
,”
IEEE Trans. Magn.
,
48
(
10
), pp.
2592
2599
.
14.
Marth
,
E.
,
Jungmayr
,
G.
, and
Amrhein
,
W.
,
2014
, “
A 2D-Based Analytical Method for Calculating Permanent Magnetic Ring Bearings With Arbitrary Magnetization and Its Application to Optimal Bearing Design
,”
IEEE Trans. Magn.
,
50
(
5
), pp.
1
8
.
15.
Ravaud
,
R.
,
Lemarquand
,
G.
,
Lemarquand
,
V.
, and
Depollier
,
C.
,
2008
, “
Analytical Calculation of the Magnetic Field Created by Permanent-Magnet Rings
,”
IEEE Trans. Magn.
,
44
(
8
), pp.
1982
1989
.
16.
Ravaud
,
R.
,
Lemarquand
,
G.
,
Lemarquand
,
V.
, and
Depollier
,
C.
,
2008
, “
The Three Exact Components of the Magnetic Field Created by a Radially Magnetized Tile Permanent Magnet
,”
Prog. Electromagn. Res., PIER
,
88
, pp.
307
319
.
17.
Ravaud
,
R.
,
Lemarquand
,
G.
,
Lemarquand
,
V.
, and
Depollier
,
C.
,
2009
, “
Discussion About the Analytical Calculation of the Magnetic Field Created by Permanent Magnets
,”
Prog. Electromagn. Res. B
,
11
, pp.
281
297
.
18.
Bekinal
,
S. I.
, and
Jana
,
S.
,
2016
, “
Generalized Three-Dimensional Mathematical Models for Force and Stiffness in Axially, Radially, and Perpendicularly Magnetized Passive Magnetic Bearings With n Number of Ring Pairs
,”
ASME J. Tribol.
,
138
(
3
), p.
031105
.
19.
Lijesh
,
K. P.
, and
Hirani
,
H.
,
2015
, “
Development of Analytical Equations for Design and Optimization of Axially Polarized Radial Passive Magnetic Bearing
,”
ASME J. Tribol.
,
137
(
1
), pp.
1
9
.
20.
Moser
,
R.
,
Sandtner
,
J.
, and
Bleuler
,
H.
,
2006
, “
Optimization of Repulsive Passive Magnetic Bearings
,”
IEEE Trans. Magn.
,
42
(
8
), pp.
2038
2042
.
21.
Yoo
,
S. Y.
,
Kim
,
W. Y.
,
Kim
,
S. J.
,
Lee
,
W. R.
,
Bae
,
Y. C.
, and
Noh
,
M.
,
2011
, “
Optimal Design of Non-Contact Thrust Bearing Using Permanent Magnet Rings
,”
Int. J. Precis. Eng. Manuf.
,
12
(
6
), pp.
1009
1014
.
You do not currently have access to this content.