Ti-6Al-4V pins were slid against SS316L disks in pin-on-disk arrangement using pins of different diameters; with the contact pressure maintained the same for all experiments under ambient and vacuum conditions. Characterization of the tribological samples was performed using scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), and X-ray diffraction (XRD). The tribological behavior was found to be governed by strain rate response (SRR), tribo-oxidation (TO), formation of a mechanically mixed layer (MML), and frictional heating which can affect each of the above factors. For a particular set of experiments (ambient/vacuum), variation of wear-rate with respect to sliding speed were found to follow the heat flux in each set. Propensity of this material to undergo softening due to frictional heating and strain rate effects is reflected in the tribological response.

References

References
1.
Farokhzadeh
,
K.
, and
Edrisy
,
A.
,
2016
, “
Transition Between Mild and Severe Wear in Titanium Alloys
,”
Tribol. Int.
,
94
, pp.
98
111
.
2.
Chiou
,
S. T.
,
Tsai
,
H. L.
, and
Lee
,
W. S.
,
2007
, “
Effects of Strain Rate and Temperature on the Deformation and Fracture Behaviour of Titanium Alloy
,”
Mater. Trans.
,
48
(
9
), pp.
2525
2533
.
3.
M/s ASM Aerospace Specifications Metals, Inc., “Titanium Ti 6Al 4V-AMS 4911,” http://www.aerospacemetals.com/titanium-ti-6al-4v-ams-4911.html
4.
Budinski
,
K. G.
,
1991
, “
Tribological Properties of Titanium Alloys
,”
Wear
,
151
(
2
), pp.
203
217
.
5.
Qu
,
J.
,
Blau
,
P. J.
,
Watkins
,
T. R.
,
Cavin
,
O. B.
, and
Kulkarni
,
N. S.
,
2005
, “
Friction and Wear of Titanium Alloys Sliding Against Metal, Polymer, and Ceramic Counterfaces
,”
Wear
,
258
(
9
), pp.
1348
1356
.
6.
Straffelini
,
G.
, and
Molinari
,
A.
,
1999
, “
Dry Sliding Wear of Ti–6Al–4V Alloy as Influenced by the Counterface and Sliding Conditions
,”
Wear
,
236
(
1–2
), pp.
328
338
.
7.
Liao
,
S. C.
, and
Duffy
,
J.
,
1998
, “
Adiabatic Shear Bands in a TI-6Al-4V Titanium Alloy
,”
J. Mech. Phys. Solids
,
46
(
11
), pp.
2201
2231
.
8.
Timothy
,
S. P.
, and
Hutchings
,
I. M.
,
1985
, “
The Structure of Adiabatic Shear Bands in a Titanium Alloy
,”
Acta Metall.
,
33
(
4
), pp.
667
676
.
9.
Shahan
,
A. R.
, and
Taheri
,
A. K.
,
1993
, “
Adiabatic Shear Bands in Titanium and Titanium Alloys: A Critical Review
,”
Mater. Des.
,
14
(
4
), pp.
243
250
.
10.
Nemat-Nasser
,
S.
,
Wei-Guo
,
G.
,
Nesterenko
,
V. F.
,
Indrakanti
,
S. S.
, and
Ya-Bei
,
G.
,
2001
, “
Dynamic Response of Conventional and Hot Isostatically Pressed Ti–6Al–4V Alloys: Experiments and Modeling
,”
Mech. Mater.
,
33
(
8
), pp.
425
439
.
11.
Chelliah
,
N.
, and
Kailas
,
S. V.
,
2009
, “
Synergy Between Tribo-Oxidation and Strain Rate Response on Governing the Dry Sliding Wear Behavior of Titanium
,”
Wear
,
266
(
7–8
), pp.
704
712
.
12.
Kailas
,
S. V.
,
Prasad
,
Y. V. R. K.
, and
Biswas
,
S. K.
,
1994
, “
Flow Instabilities and Fracture in Ti-6AI-4V Deformed in Compression at 298 K to 673 K
,”
Metall. Mater. Trans. A
,
25
(
10
), pp.
2173
2179
.
13.
Seshacharyulu
,
T.
,
Medeiros
,
S. C.
,
Frazier
,
W. G.
, and
Prasad
,
Y. V. R. K.
,
2002
, “
Microstructural Mechanisms During Hot Working of Commercial Grade Ti–6Al–4V With Lamellar Starting Structure
,”
Mater. Sci. Eng., A
,
325
(
1–2
), pp.
112
125
.
14.
Me-Bar
,
Y.
, and
Shechtman
,
D.
,
1983
, “
On the Adiabatic Shear of Ti-6Al-4V Ballistic Targets
,”
Mater. Sci. Eng.
,
58
(
2
), pp.
181
188
.
15.
Ramirez
,
A. C.
,
2008
,
Microstructural Properties Associated With Adiabatic Shear Bands in Titanium-Aluminum-Vanadium Deformed by Ballistic Impact
, PreQuest LLC, Ann Arbor, MI.
16.
Islam
,
M. A.
,
2012
, “
Determination of the Deformation State of a Ti-6Al-4V Alloy Subjected to Orthogonal Cutting Using Experimental and Numerical Methods
,”
M.A.Sc. thesis
, University of Windsor, Windsor, Canada, pp.
43
45
.
17.
Karpat
,
Y.
,
2011
, “
Temperature Dependent Flow Softening of Titanium Alloy Ti6Al4V: An Investigation Using Finite Element Simulation of Machining
,”
J. Mater. Process. Technol.
,
211
(
4
), pp.
737
749
.
18.
Molinari
,
A.
,
Soldani
,
X.
, and
Miguélez
,
M. H.
,
2013
, “
Adiabatic Shear Banding and Scaling Laws in Chip Formation With Application to Cutting of Ti–6Al–4V
,”
J. Mech. Phys. Solids
,
61
(
11
), pp.
2331
2359
.
19.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1983
, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,”
Seventh International Symposium on Ballistics
, pp.
541
547
.
20.
Osovski
,
S.
,
Rittel
,
D.
, and
Venkert
,
A.
,
2013
, “
The Respective Influence of Microstructural and Thermal Softening on Adiabatic Shear Localization
,”
Mech. Mater.
,
56
, pp.
11
22
.
21.
Rittel
,
D.
, and
Wang
,
Z. G.
,
2008
, “
Thermo-Mechanical Aspects of Adiabatic Shear Failure of AM50 and Ti6Al4V Alloys
,”
Mech. Mater.
,
40
(
8
), pp.
629
635
.
22.
Wang
,
L.
,
Li
,
X. X.
,
Zhou
,
Y.
,
Zhang
,
Q. Y.
,
Chen
,
K. M.
, and
Wang
,
S. Q.
,
2015
, “
Relations of Counterface Materials With Stability of Tribo-Oxide Layer and Wear Behavior of Ti–6.5Al–3.5Mo–1.5Zr–0.3Si Alloy
,”
Tribol. Int.
,
91
, pp.
246
257
.
23.
Mao
,
Y. S.
,
Wang
,
L.
,
Chen
,
K. M.
,
Wang
,
S. Q.
, and
Cui
,
X. H.
,
2013
, “
Tribo-Layer and Its Role in Dry Sliding Wear of Ti–6Al–4V Alloy
,”
Wear
,
297
(
1–2
), pp.
1032
1039
.
24.
Borgioli
,
F.
,
Galvanetto
,
E.
,
Iozzelli
,
F.
, and
Pradelli
,
G.
,
2005
, “
Improvement of Wear Resistance of Ti–6Al–4V Alloy by Means of Thermal Oxidation
,”
Mater. Lett.
,
59
(
17
), pp.
2159
2162
.
25.
Dalili
,
N.
,
Edrisy
,
A.
,
Farokhzadeh
,
K.
,
Li
,
J.
,
Lo
,
J.
, and
Riahi
,
A. R.
,
2010
, “
Improving the Wear Resistance of Ti–6Al–4V/TiC Composites Through Thermal Oxidation
,”
Wear
,
269
(
7–8
), pp.
590
601
.
26.
Stratton
,
P.
, and
Graf
,
M.
,
2010
, “
Wear of Diffusion Hardened Ti–6Al–4V Sliding Against Tool Steel
,”
Wear
,
268
(
3–4
), pp.
612
616
.
27.
Biswas
,
S. K.
,
2005
, “
Wear of Metals: A Material Approach
,”
Wear-Materials, Mechanisms and Practice
,
G. W.
Stachowiak
, ed.,
Wiley
,
New York
, pp.
21
36
.
28.
Kailas
,
S. V.
, and
Biswas
,
S. K.
,
1997
, “
Sliding Wear of Titanium
,”
ASME J. Tribol.
,
119
(
1
), pp.
31
35
.
29.
Kailas
,
S. V.
, and
Biswas
,
S. K.
,
1999
, “
Sliding Wear of Copper Against Alumina
,”
ASME J. Tribol.
,
121
(
4
), pp.
795
801
.
30.
Alpas
,
A. T.
,
Hu
,
H.
, and
Zhang
,
J.
,
1993
, “
Plastic Deformation and Damage Accumulation Below the Worn Surfaces
,”
Wear
,
162–164
(
Part A
), pp.
188
195
.
31.
Biswas
,
S. K.
, and
Kailas
,
S. V.
,
1997
, “
Strain Rate Response and Wear of Metals
,”
Tribol. Int.
,
30
(
5
), pp.
369
375
.
32.
Kailas
,
S. V.
, and
Biswas
,
S. K.
,
1995
, “
Strain Rate Response and Its Effect in Plane Strain Abrasion of Metals by a Wedge
,”
Wear
,
184
(
1
), pp.
23
32
.
33.
Ludema
,
K. C.
,
1996
,
Friction, Wear, Lubrication—A Textbook in Tribology
,
CRC Press
, Boca Raton, FL, pp.
132
138
.
34.
Ghaednia
,
H.
, and
Jackson
,
R. L.
,
2013
, “
The Effect of Nanoparticles on the Real Area of Contact, Friction, and Wear
,”
ASME J. Tribol.
,
135
(
4
), p.
041603
.
35.
Kailas
,
S. V.
, and
Biswas
,
S. K.
,
1995
, “
The Role of Strain Rate Response in Plane Strain Abrasion of Metals
,”
Wear
,
181–183
(
2
), pp.
648
657
.
36.
ASTM G 99
, “
Standard Test Method for Wear Testing With a Pin-on-Disc Apparatus
,” http://www.astm.org/Standards/G99.htm
37.
Costan
,
A.
,
Dima
,
A.
,
Ioniţa
,
I.
,
Forna
,
N.
,
Perju
,
M. C.
, and
Agop
,
M.
,
2011
, “
Thermal Properties of a Ti-6Al-4V Alloy Used as Dental Implant Material
,”
Optoelectron. Adv. Mater., Rapid Commun.
,
5
(
1–2
), pp.
92
95
.
You do not currently have access to this content.