Use of nanometer thin films has received significant attention in recent years because of their advantages in controlling friction and wear. There have been significant advances in applications such as magnetic storage devices, and there is a need to explore new materials and develop experimental and theoretical frameworks to better understand nanometer thick coating systems, especially wear characteristics. In this work, a finite element model is developed to simulate the sliding wear between the protruded pole tip in a recording head (modeled as submicrometer radius cylinder) and a rigid asperity on the disk surface. Wear is defined as plastically deformed asperity and material yielding. Parametric studies reveal the effect of the cylindrical asperity geometry, material properties, and contact severity on wear. An Archard-type wear model is proposed, where the wear coefficients are directly obtained through curve fitting of the finite element model, without the use of an empirical coefficient. Limitations of such a model are also discussed.

References

References
1.
Gui
,
J.
,
2003
, “
Tribology Challenges for Head-Disk Interface Toward 1 TB/in2
,”
IEEE Trans. Magn.
,
39
(
2
), pp.
716
721
.
2.
Marchon
,
B.
,
Pitchford
,
T.
,
Hsia
,
Y.-T.
, and
Gangopadhyay
,
S.
,
2013
, “
The Head-Disk Interface Roadmap to an Areal Density of 4 Tbit/in2
,”
Adv. Tribol.
,
242
(
1
) p.
521086
.
3.
Ono
,
K.
,
Iida
,
K.
, and
Takahashi
,
K.
,
1999
, “
Effects of Design Parameters on Bouncing Vibrations of a Single-DOF Contact Slider and Necessary Design Conditions for Perfect Contact Sliding
,”
ASME J. Tribol.
,
121
(
3
), pp.
596
603
.
4.
Hanchi
,
J.
,
Polycarpou
,
A. A.
, and
Boutaghou
,
Z.
,
1999
, “
Tribology of Contacting Head-Disk Interfaces
,” Symposium Interface Tribology Toward 100 Gb/in2, pp.
17
22
.
5.
Lee
,
S. C.
, and
Polycarpou
,
A. A.
,
2004
, “
Adhesion Forces for Sub-10 nm Flying-Height Magnetic Storage Head Disk Interfaces
,”
ASME J. Tribol.
,
126
(
2
), pp.
334
341
.
6.
Suk
,
M.
,
Miyake
,
K.
,
Kurita
,
M.
,
Tanaka
,
H.
,
Saegusa
,
S.
, and
Robertson
,
N.
,
2005
, “
Verification of Thermally Induced Nanometer Actuation of Magnetic Recording Transducer to Overcome Mechanical and Magnetic Spacing Challenges
,”
IEEE Trans. Magn.
,
41
(
11
), pp.
4350
4352
.
7.
Li
,
H.
,
Liu
,
B.
, and
Chong
,
T.-C.
,
2006
, “
Interface Solution for Writing-Induced Nano-Deformation of Slider Body
,”
J. Magn. Magn. Mater.
,
303
(
2
), pp.
e86
e90
.
8.
Gong
,
Z.-Q.
, and
Liu
,
J. J.
,
2005
, “
Pole-Tip Protrusion Effect on Head–Disk Interface at Low Flying Clearance
,”
IEEE Trans. Magn.
,
41
(
10
), pp.
3019
3021
.
9.
Wang
,
Y.
,
Wei
,
X.
,
Tsui
,
K.-L.
, and
Chow
,
T. W. S.
,
2014
, “
Tribological Degradation of Head–Disk Interface in Hard Disk Drives Under Accelerated Wear Condition
,”
IEEE Trans. Magn.
,
50
(
3
), p.
3301007
.
10.
Yeo
,
C.-D.
,
Polycarpou
,
A. A.
,
Kiely
,
J. D.
, and
Hsia
,
Y.-T.
,
2007
, “
Nanomechanical Properties of Sub-10 nm Carbon Film Overcoats Using the Nanoindentation Technique
,”
J. Mater. Res.
,
22
(
1
), pp.
141
151
.
11.
Sourty
,
E.
,
Sullivan
,
J. L.
, and
Bijker
,
M. D.
,
2003
, “
Chromium Oxide Coatings Applied to Magnetic Tape Heads for Improved Wear Resistance
,”
Tribol. Int.
,
36
(
4
), pp.
389
396
.
12.
Tan
,
M.
,
Yan
,
Y.
,
Zhang
,
H.
,
Han
,
X.
,
Zhu
,
J.
,
Han
,
J.
, and
Ma
,
H.
,
2009
, “
Corrosion Protection of Ultra-Thin ta-C Films for Recording Slider Applications at Varied Substrate Bias
,”
Surf. Coat. Technol.
,
203
(
8
), pp.
963
966
.
13.
Suzuki
,
M.
,
Watanabe
,
T.
,
Tanaka
,
A.
, and
Koga
,
Y.
,
2003
, “
Tribological Properties of Diamond-Like Carbon Films Produced by Different Deposition Techniques
,”
Diamond Relat. Mater.
,
12
(
10
), pp.
2061
2065
.
14.
Lee
,
S.
, and
Yeo
,
C. D.
,
2012
, “
Microwear Mechanism of Head Carbon Film During Head Disk Interface Sliding Contact
,”
Tribol. Int.
,
45
(
1
), pp.
30
37
.
15.
Jones
,
P. M.
,
Ahner
,
J.
,
Platt
,
C. L.
,
Tang
,
H.
, and
Hohlfeld
,
J.
,
2014
, “
Understanding Disk Carbon Loss Kinetics for Heat Assisted Magnetic Recording
,”
IEEE Trans. Magn.
,
50
(
3
), pp.
144
147
.
16.
Vijay
,
P.
, and
Talke
,
F. E.
,
2000
, “
Wear and Hardness of Carbon Overcoats on Magnetic Recording Sliders
,”
Wear
,
243
(1–2), pp.
18
24
.
17.
Song
,
D.
,
Kvitek
,
R.
, and
Schnur
,
D.
,
2006
, “
Inspection of Pole Tip Diamondlike Carbon Wear Due to Heater-Induced Head-Disc Contact
,”
J. Appl. Phys.
,
99
(8), p.
08N107
.
18.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University Press
,
New York
.
19.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
,
1987
, “
An Elastic-Plastic Model for the Contact of Rough Surfaces
,”
ASME J. Tribol.
,
109
(
2
), pp.
257
263
.
20.
Kogut
,
L.
, and
Etsion
,
I.
,
2002
, “
Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat
,”
ASME J. Appl. Mech.
,
69
(
5
), pp.
657
662
.
21.
Du
,
Y.
,
Chen
,
L.
,
McGruer
,
N. E.
,
Adams
,
G. G.
, and
Etsion
,
I.
,
2007
, “
A Finite Element Model of Loading and Unloading of an Asperity Contact With Adhesion and Plasticity
,”
J. Colloid Interface Sci.
,
312
(
2
), pp.
522
528
.
22.
Faulkner
,
A.
, and
Arnell
,
R. D.
,
2000
, “
The Development of a Finite Element Model to Simulate the Sliding Interaction Between Two, Three-Dimensional, Elastoplastic, Hemispherical Asperities
,”
Wear
,
242
(
1
), pp.
114
122
.
23.
Podra
,
P.
, and
Andersson
,
S.
,
1999
, “
Simulating Sliding Wear With Finite Element Method
,”
Tribol. Int.
,
32
(
2
), pp.
71
81
.
24.
Archard
,
J. F.
,
1953
, “
Contact and Rubbing of Flat Surfaces
,”
J. Appl. Phys.
,
24
(
8
), pp.
981
988
.
25.
Shankar
,
S.
, and
Mayuram
,
M. M.
,
2008
, “
Sliding Interaction and Wear Studies Between Two Hemispherical Asperities Based on Finite Element Approach
,”
Int. J. Surf. Sci. Eng.
,
2
(
1
), pp.
71
83
.
26.
Salib
,
J.
,
Kligerman
,
Y.
, and
Etsion
,
I.
,
2008
, “
A Model for Potential Adhesive Wear Particle at Sliding Inception of a Spherical Contact
,”
Tribol. Lett.
,
30
(
3
), pp.
225
233
.
27.
Katta
,
R. R.
,
Polycarpou
,
A. A.
,
Lee
,
S. C.
, and
Suk
,
M.
,
2010
, “
Experimental and FEA Scratch of Magnetic Storage Thin-Film Disks to Correlate Magnetic Signal Degradation With Permanent Deformation
,”
ASME J. Tribol.
,
132
(
2
), p.
021902
.
28.
White
,
R. L.
,
Schreck
,
E.
, and
Wang
,
R. H.
,
1996
, “
Nanoindentation and the Tribology of Head-Disk Interface Components
,”
IEEE Trans. Magn.
,
32
(
1
), pp.
110
114
.
29.
Deng
,
H.
,
Minor
,
M. K.
, and
Barnard
,
J. A.
,
1996
, “
Comparison of Mechanical and Tribological Properties of Permalloy and High Moment FeTaN Thin Films for Tape Recording Heads
,”
IEEE Trans. Magn.
,
32
(
5
), pp.
3702
3704
.
30.
Rigney
,
D. A.
,
1988
, “
Sliding Wear of Metals
,”
Annu. Rev. Mater. Res.
,
18
(
1
), pp.
141
163
.
31.
Bhushan
,
B.
,
2002
,
Introduction to Tribology
,
Wiley
,
New York
.
32.
Machcha
,
A. R.
,
Azarian
,
M. H.
, and
Talke
,
F. E.
,
1996
, “
An Investigation of Nano-Wear During Contact Recording
,”
Wear
,
197
(
1
), pp.
211
220
.
33.
Sun
,
Y.
,
Bloyce
,
A.
, and
Bell
,
T.
,
1995
, “
Finite Element Analysis of Plastic Deformation of Various TiN Coating/Substrate Systems Under Normal Contact With a Rigid Sphere
,”
Thin Solid Films
,
271
(
1
), pp.
122
131
.
34.
Tseng
,
A. A.
,
Shirakashi
,
J. I.
,
Nishimura
,
S.
,
Miyashita
,
K.
, and
Notargiacomo
,
A.
,
2009
, “
Scratching Properties of Nickel-Iron Thin Film and Silicon Using Atomic Force Microscopy
,”
J. Appl. Phys.
,
106
(
4
), p.
044314
.
35.
Green
,
I.
,
2005
, “
Poisson Ratio Effects and Critical Values in Spherical and Cylindrical Hertzian Contacts
,”
Int. J. Appl. Mech. Eng.
,
10
(
3
), pp.
451
462
.
36.
Colaco
,
R.
,
2009
, “
An AFM Study of Single-Contact Abrasive Wear: The Rabinowicz Wear Equation Revisited
,”
Wear
,
267
(
11
), pp.
1772
1776
.
You do not currently have access to this content.