The current study is aimed to investigate the tribological properties of ultrahigh molecular weight polyethylene (UHMWPE) reinforced with organoclay Cloisite (C15A). Nanocomposites are prepared using a high energy ball milling process followed by hot pressing. Three different loadings of 0.5 wt.%, 1.5 wt.%, and 3 wt.% of C15A, respectively, are used as reinforcement. Results from the ball-on-disk wear tests showed that nanocomposites reinforced with 1.5 wt.% of C15A exhibited best wear resistance and lower coefficient of friction (COF), with C15A reducing the wear rate by 41% and the COF by 38%, when compared to the pristine UHMWPE. These improvements are attributed to the uniform dispersion of the nanosized clay platelets preventing large-scale material removal and formation of a thin tenacious, continuous transfer film on the counterface for C15A organoclay composites. X-ray diffraction (XRD), scanning electron microscopy (SEM), and optical profilometry are used to characterize the morphology of the nanocomposites and the wear tracks. SEM images of worn surfaces indicated more abrasive wear for the case of pristine UHMWPE as compared to organoclay composites.

References

References
1.
Briscoe
,
B.
, and
Sinha
,
S.
,
2005
, “
Tribology of Polymeric Solids and Their Composites
,”
Wear–Mechanisms, Materials and Practice
,
G. W.
Stachowiak
, ed.,
Wiley
,
Chichester, UK
, pp.
223
268
.
2.
Briscoe
,
B. J.
, and
Sinha
,
S. K.
,
2013
, “
Chapter 1—Tribological Applications of Polymers and Their Composites–Past, Present and Future Prospects
,”
Tribology of Polymeric Nanocomposites
,
2nd ed.
,
K.
Friedrich
, and
A. K.
Schlarb
, eds.,
Butterworth-Heinemann
,
Oxford, UK
, pp.
1
22
.
3.
Bermúdez
,
M. D.
,
Carrión
,
F. J.
,
Espejo
,
C.
,
Sanes
,
J.
, and
Ojados
,
G.
,
2013
, “
Tribology of Bulk Polymer Nanocomposites and Nanocomposite Coatings
,”
Tribology of Nanocomposites
,
J. P.
Davim
, ed.,
Springer
,
Berlin/Heidelberg
, pp.
1
18
.
4.
Friedrich
,
K.
,
Lu
,
Z.
, and
Hager
,
A.
,
1995
, “
Recent Advances in Polymer Composites' Tribology
,”
Wear
,
190
(
2
), pp.
139
144
.
5.
Aldousiri
,
B.
,
Shalwan
,
A.
, and
Chin
,
C.
,
2013
, “
A Review on Tribological Behaviour of Polymeric Composites and Future Reinforcements
,”
Adv. Mater. Sci. Eng.
,
2013
, pp.
1
8
.
6.
Shalwan
,
A.
, and
Yousif
,
B.
,
2013
, “
In State of Art: Mechanical and Tribological Behaviour of Polymeric Composites Based on Natural Fibres
,”
Mater. Des.
,
48
, pp.
14
24
.
7.
Harvey
,
P.
, and
Stein
,
L.
,
1999
,
Ultra High Molecular Weight Polyethylene (UHMWPE)
,
Ticona LLC; ASM International
,
Materials Park, OH
.
8.
Lampman
,
S.
,
2003
,
Characterization and Failure Analysis of Plastics
,
ASM International
,
Materials Park, OH
.
9.
Samad
,
M. A.
, and
Sinha
,
S. K.
,
2011
, “
Dry Sliding and Boundary Lubrication Performance of a UHMWPE/CNTs Nanocomposite Coating on Steel Substrates at Elevated Temperatures
,”
Wear
,
270
(
5
), pp.
395
402
.
10.
Samad
,
M. A.
, and
Sinha
,
S. K.
,
2011
, “
Mechanical, Thermal and Tribological Characterization of a UHMWPE Film Reinforced With Carbon Nanotubes Coated on Steel
,”
Tribol. Int.
,
44
(
12
), pp.
1932
1941
.
11.
Li
,
S.
, and
Li
,
D.
,
2014
, “
Carbon Fiber Reinforced Highly Filled Charcoal Powder/Ultra High Molecular Weight Polyethylene Composites
,”
Mater. Lett.
,
134
, pp.
99
102
12.
Chang
,
L.
, and
Friedrich
,
K.
,
2010
, “
Enhancement Effect of Nanoparticles on the Sliding Wear of Short Fiber-Reinforced Polymer Composites: A Critical Discussion of Wear Mechanisms
,”
Tribol. Int.
,
43
(
12
), pp.
2355
2364
.
13.
Zoo
,
Y.-S.
,
An
,
J.-W.
,
Lim
,
D.-P.
, and
Lim
,
D.-S.
,
2004
, “
Effect of Carbon Nanotube Addition on Tribological Behavior of UHMWPE
,”
Tribol. Lett.
,
16
(
4
), pp.
305
309
.
14.
Wei
,
Z.
,
Zhao
,
Y. P.
,
Ruan
,
S.
,
Gao
,
P.
, and
Yu
,
T.
,
2006
, “
A Study of the Tribological Behavior of Carbon‐Nanotube‐Reinforced Ultrahigh Molecular Weight Polyethylene Composites
,”
Surf. Interface Anal.
,
38
(
4
), pp.
883
886
.
15.
Lahiri
,
D.
,
Hec
,
F.
,
Thiesse
,
M.
,
Durygin
,
A.
,
Zhang
,
C.
, and
Agarwal
,
A.
,
2014
, “
Nanotribological Behavior of Graphene Nanoplatelet Reinforced Ultra High Molecular Weight Polyethylene Composites
,”
Tribol. Int.
,
70
, pp.
165
169
.
16.
Alexandre
,
M.
, and
Dubois
,
P.
,
2000
, “
Polymer-Layered Silicate Nanocomposites: Preparation, Properties and Uses of a New Class of Materials
,”
Mater. Sci. Eng., R
,
28
(
1
), pp.
1
63
.
17.
Kanny
,
K.
,
Jawahar
,
P.
, and
Moodley
,
V.
,
2008
, “
Mechanical and Tribological Behavior of Clay–Polypropylene Nanocomposites
,”
J. Mater. Sci.
,
43
(
22
), pp.
7230
7238
.
18.
Srinath
,
G.
, and
Gnanamoorthy
,
R.
,
2005
, “
Effect of Nanoclay Reinforcement on Tensile and Tribo Behaviour of Nylon 6
,”
J. Mater. Sci.
,
40
(
11
), pp.
2897
2901
.
19.
Sirong
,
Y.
,
Zhongzhen
,
Y.
, and
Yiu-Wing
,
M.
,
2007
, “
Effects of SEBS-g-MA on Tribological Behaviour of nylon 66/Organoclay Nanocomposites
,”
Tribol. Int.
,
40
(
5
), pp.
855
862
.
20.
Peng
,
Q.-Y.
,
Cong
,
P.-H.
,
Liu
,
X.-J.
,
Liu
,
T.-X.
,
Huang
,
S.
, and
Li
,
T.-S.
,
2009
, “
The Preparation of PVDF/Clay Nanocomposites and the Investigation of Their Tribological Properties
,”
Wear
,
266
(
7
), pp.
713
720
.
21.
Wen
,
J.
,
Yin
,
P.
, and
Zhen
,
M.
,
2008
, “
Friction and Wear Properties of UHMWPE/Nano-MMT Composites Under Oilfield Sewage Condition
,”
Mater. Lett.
,
62
(
25
), pp.
4161
4163
.
22.
Bhushan
,
B.
,
2013
,
Introduction to Tribology
,
Wiley
,
New York.
23.
Maksimkin
,
A.
,
Kaloshkin
,
S.
,
Tcherdyntsev
,
V.
,
Chukov
,
D.
, and
Shchetinin
,
I.
,
2013
, “
Effect of High‐Energy Ball Milling on the Structure and Mechanical Properties of Ultra‐High Molecular Weight Polyethylene
,”
J. Appl. Polym. Sci.
,
130
(
4
), pp.
2971
2977
.
24.
Mittal
,
V.
,
2009
, “
Polymer Layered Silicate Nanocomposites: A Review
,”
Materials
,
2
(
3
), pp.
992
1057
.
25.
Olad
,
A.
,
2011
, “
Polymer/Clay Nanocomposites
,”
Advances in Diverse Industrial Applications of Nanocomposites
,
B.
Reddy
, ed.,
InTech
,
Rijeka, Croatia
, pp.
113
151
.
26.
Al-Qadhi
,
M.
,
Merah
,
N.
, and
Gasem
,
Z.
,
2013
, “
Mechanical Properties and Water Uptake of Epoxy–Clay Nanocomposites Containing Different Clay Loadings
,”
J. Mater. Sci.
,
48
(
10
), pp.
3798
3804
.
27.
Yasmin
,
A.
,
Abot
,
J. L.
, and
Daniel
,
I. M.
,
2003
, “
Processing of Clay/Epoxy Nanocomposites by Shear Mixing
,”
Scr. Mater.
,
49
(
1
), pp.
81
86
.
28.
Nagesha
,
K.
,
Rajanish
,
M.
, and
Shivappa
,
D.
,
2013
, “
A Review on Mechanical Alloying
,”
Int. J. Eng. Res. Appl.
,
3
, pp.
921
924
.
29.
Yasmin
,
A.
,
Abot
,
J. L.
, and
Daniel
,
I. M.
,
2002
, “
Processing of Clay/Epoxy Nanocomposites With a Three-Roll Mill Machine
,”
Mater. Res. Soc. Symp. Proc.
;
Cambridge University Press
,
Cambridge, UK
, Vol.
740
, p.
I3.7
.
30.
Jawahar
,
P.
,
Gnanamoorthy
,
R.
, and
Balasubramanian
,
M.
,
2006
, “
Tribological Behaviour of Clay–Thermoset Polyester Nanocomposites
,”
Wear
,
261
(
7
), pp.
835
840
.
31.
Bahadur
,
S.
,
2000
, “
The Development of Transfer Layers and Their Role in Polymer Tribology
,”
Wear
,
245
(
1
), pp.
92
99
.
You do not currently have access to this content.