An analytical numerical model to optimize the shape of concave surface texture for the achievement of low friction in reciprocating sliding motion has been developed. The model uses: (i) average Reynolds equation to evaluate friction coefficient and (ii) genetic algorithm (GA) to optimize and obtain several preferable texture shapes. Analysis of distribution contour maps of hydrodynamic pressure gives the possible mechanisms involved. Moreover, experimental comparisons of tribological performances between the optimized and the circular textures were conducted to verify the simulation results. It is shown that surface textures of the elliptical and fusiform shapes can effectively enhance the load bearing capacity and reduce the friction coefficient compared with circular textures. The increase in hydrodynamic pressure for these optimized texture shapes is considered to be the major mechanism responsible for improving their tribological performance. Experimental results confirm that the elliptical-shaped textures have preferable tribological behaviors of low friction coefficient under the operating condition of light load.

References

References
1.
Wang
,
X.
,
Kato
,
K.
,
Adachi
,
K.
, and
Aizawa
,
K.
,
2003
, “
Loads Carrying Capacity Map for the Surface Texture Design of SiC Thrust Bearing Sliding in Water
,”
Tribol. Int.
,
36
(
3
), pp.
189
197
.
2.
Etsion
,
I.
,
2004
, “
Improving Tribological Performance of Mechanical Components by Laser Surface Texturing
,”
Tribol. Lett.
,
17
(
4
), pp.
733
737
.
3.
Etsion
,
I.
, and
Halperin
,
G.
,
2002
, “
A Laser Surface Textured Hydrostatic Mechanical Seal
,”
Tribol. Trans.
,
45
(
3
), pp.
430
434
.
4.
Zhang
,
H.
,
Zhang
,
D.
,
Hua
,
M.
,
Dong
,
G.
, and
Chin
,
K.
,
2014
, “
A Study on the Tribological Behavior of Surface Texturing on Babbitt Alloy Under Mixed or Starved Lubrication
,”
Tribol. Lett.
,
56
(
2
), pp.
305
315
.
5.
Zhang
,
H.
,
Qin
,
L.-G.
,
Hua
,
M.
,
Dong
,
G.-N.
, and
Chin
,
K.-S.
,
2015
, “
A Tribological Study of the Petaloid Surface Texturing for Co–Cr–Mo Alloy Artificial Joints
,”
Appl. Surf. Sci.
,
332
(3), pp.
557
564
.
6.
Etsion
,
I.
,
2005
, “
State of the Art in Laser Surface Texturing
,”
ASME J. Tribol.
,
127
(
1
), pp.
248
253
.
7.
Wang
,
J.
,
Han
,
Z.
,
Chen
,
H.
, and
Chen
,
D.
,
2008
, “
Drag Reduction by Dimples on Surfaces in Plane–Plane Contact Lubrication
,”
Tribol. Lett.
,
31
(
3
), pp.
159
166
.
8.
Wang
,
W.-Z.
,
Huang
,
Z.
,
Shen
,
D.
,
Kong
,
L.
, and
Li
,
S.
,
2013
, “
The Effect of Triangle-Shaped Surface Textures on the Performance of the Lubricated Point-Contacts
,”
ASME J. Tribol.
,
135
(
2
), p.
021503
.
9.
Siripuram
,
R. B.
, and
Stephens
,
L. S.
,
2004
, “
Effect of Deterministic Asperity Geometry on Hydrodynamic Lubrication
,”
ASME J. Tribol.
,
126
(
3
), pp.
527
534
.
10.
Galda
,
L.
,
Pawlus
,
P.
, and
Sep
,
J.
,
2009
, “
Dimples Shape and Distribution Effect on Characteristics of Stribeck Curve
,”
Tribol. Int.
,
42
(
10
), pp.
1505
1512
.
11.
Yu
,
H.
,
Wang
,
X.
, and
Zhou
,
F.
,
2009
, “
Geometric Shape Effects of Surface Texture on the Generation of Hydrodynamic Pressure Between Conformal Contacting Surfaces
,”
Tribol. Lett.
,
37
(
2
), pp.
123
130
.
12.
Qiu
,
M.
,
Delic
,
A.
, and
Raeymaekers
,
B.
,
2012
, “
The Effect of Texture Shape on the Load-Carrying Capacity of Gas-Lubricated Parallel Slider Bearings
,”
Tribol. Lett.
,
48
(
3
), pp.
315
327
.
13.
Qiu
,
M.
,
Minson
,
B. R.
, and
Raeymaekers
,
B.
,
2013
, “
The Effect of Texture Shape on the Friction Coefficient and Stiffness of Gas-Lubricated Parallel Slider Bearings
,”
Tribol. Int.
,
67
(11), pp.
278
288
.
14.
Zhang
,
H.
,
Hua
,
M.
,
Dong
,
G.-N.
,
Zhang
,
D.-Y.
, and
Chin
,
K.-S.
,
2015
, “
A Mixed Lubrication Model for Studying Tribological Behaviors of Surface Texturing
,”
Tribol. Int.
,
93
(2), pp.
583
592
.
15.
Yu
,
H.
,
Huang
,
W.
, and
Wang
,
X.
,
2013
, “
Dimple Patterns Design for Different Circumstances
,””
Lubrication Sci.
,
25
(2), pp.
67
78
.
16.
Shen
,
C.
, and
Khonsari
,
M. M.
,
2015
, “
Numerical Optimization of Texture Shape for Parallel Surfaces Under Unidirectional and Bidirectional Sliding
,”
Tribol. Int.
,
82
, pp.
1
11
.
17.
Burstein
,
L.
, and
Ingman
,
D.
,
2000
, “
Pore Ensemble Statistics in Application to Lubrication Under Reciprocating Motion
,”
Tribol. Trans.
,
43
(
2
), pp.
205
212
.
18.
Popov
,
A.
,
2005
, “
Genetic Algorithms for Optimization
,” User Manual, Hamburg,
2013
.
19.
Ma
,
C.
, and
Zhu
,
H.
,
2011
, “
An Optimum Design Model for Textured Surface With Elliptical-Shape Dimples Under Hydrodynamic Lubrication
,”
Tribol. Int.
,
44
(
9
), pp.
987
995
.
20.
Brunetière
,
N.
, and
Tournerie
,
B.
,
2012
, “
Numerical Analysis of a Surface-Textured Mechanical Seal Operating in Mixed Lubrication Regime
,”
Tribol. Int.
,
49
(2), pp.
80
89
.
21.
Patir
,
N.
, and
Cheng
,
H.
,
1978
, “
An Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication
,”
J. Lubr. Technol.
,
100
(
1
), pp.
12
17
.
22.
Patir
,
N.
, and
Cheng
,
H.
,
1979
, “
Application of Average Flow Model to Lubrication Between Rough Sliding Surfaces
,”
J. Lubr. Technol.
,
101
(
2
), pp.
220
229
.
23.
Wu
,
C.
, and
Zheng
,
L.
,
1989
, “
An Average Reynolds Equation for Partial Film Lubrication With a Contact Factor
,”
ASME J. Tribol.
,
111
(
1
), pp.
188
191
.
24.
Patir
,
N.
,
1978
, “
Effects of Surface Roughness on Partial Film Lubrication Using an Average Flow Model Based on Numerical Simulation
,” Ph.D. thesis, Northwestern University, Evanston, IL.
25.
Dowson
,
A.
, and
Taylor
,
C. M.
,
2003
, “
Cavitation in Bearings
,”
Annu. Rev. Fluid Mech.
,
11
, pp.
35
65
.
26.
Yan
,
D.
,
Qu
,
N.
,
Li
,
H.
, and
Wang
,
X.
,
2010
, “
Significance of Dimple Parameters on the Friction of Sliding Surfaces Investigated by Orthogonal Experiments
,”
Tribol. Trans.
,
53
(
5
), pp.
703
712
.
You do not currently have access to this content.