AA5052/ZrB2 particulate aluminum matrix composites (PAMCs) have been produced by in situ reaction of K2ZrF6 and KBF4 compounds with molten alloy at about 860 °C. Dry sliding wear and friction of composites have been investigated for a particular sliding velocity and sliding distance at different loads from ambient temperature to 200 °C. It is revealed that for a particular load and temperature, wear rate and normalized wear rate decrease with increase in the volume percentage of ZrB2 particles whereas coefficient of friction (COF) shows a reverse trend. Wear rate and COF also increase with increase in temperature for a constant load and composition. Whereas with load for a particular temperature, wear rate and wear rate per unit vol. % ZrB2 increase while COF decreases. Worn surface and wear debris morphology examined under scanning electron microscopy (SEM) and profilometer to understand the wear mechanism revealed that wear mode transition takes place from mild-oxidative to severe-metallic at 100 °C for unreinforced alloy, whereas a shifting is observed in transition temperature from 100 to 150 °C for composite with 9 vol. % ZrB2 particles. Energy dispersive spectroscopy (EDS) analysis of worn surface confirms the oxidative wear mode. Profilometry results indicate that wear surface has higher surface roughness at higher values of load and temperatures. Prior to wear and friction studies, composites were also characterized by X-ray diffraction (XRD) and SEM for morphology and microstructural characteristics to correlate with wear results. The findings are very helpful to make the AA5052/ZrB2 composites suitable for the applications, where high-temperature wear is a limiting factor.

References

References
1.
Michael Rajan
,
H. B.
,
Ramabalan
,
S.
,
Dinaharan
,
I.
, and
Vijay
,
S. J.
,
2013
, “
Synthesis and Characterization of In Situ Formed Titanium Diboride Particulate Reinforced AA7075 Aluminium Alloy Cast Composites
,”
Mater. Des.
,
44
, pp.
438
445
.
2.
Kumar
,
N.
,
Gautam
,
R. K.
, and
Mohan
,
S.
,
2015
, “
In-Situ Development of ZrB2 Particles and Their Effect on Microstructure and Mechanical Properties of AA5052 Metal-Matrix Composites
,”
Mater. Des.
,
80
, pp.
129
136
.
3.
Kumar
,
S.
,
Panwar
,
R. S.
, and
Pandey
,
O. P.
,
2013
, “
Effect of Dual Reinforced Ceramic Particles on High Temperature Tribological Properties of Aluminium Composites
,”
Ceram. Int.
,
39
(
6
), pp.
6333
6342
.
4.
Gaurav
,
G.
, and
Mohan
,
A.
,
2015
, “
Wear and Friction of AA5052-Al3Zr In Situ Composites Synthesized by Direct Melt Reaction
,”
ASME J. Tribol.
138
(
2
), p.
021602
.
5.
Jianxin
,
D.
,
Xing
,
A.
, and
Zhaoqian
,
L.
,
1996
, “
Friction and Wear Behaviour of A1203/TiB2 Composite Against Cemented Carbide in Various Atmospheres at Elevated Temperature
,”
Wear
,
195
, pp.
128
132
.
6.
Jerome
,
S.
,
Ravisankar
,
B.
,
Mahato
,
P. K.
, and
Natarajan
,
S.
,
2010
, “
Synthesis and Evaluation of Mechanical and High Temperature Tribological Properties of In-Situ Al–TiC Composites
,”
Tribol. Int.
,
43
(
11
), pp.
2029
2036
.
7.
Singh
,
J.
, and
Alpas
,
A. T.
,
1996
, “
High-Temperature Wear and Deformation Processes in Metal Matrix Composites
,”
Metall. Mater. Trans. A
,
27A
, pp.
3135
3148
.
8.
Dinaharan
,
I.
,
Murugan
,
N.
, and
Parameswaran
,
S.
,
2011
, “
Influence of In Situ Formed ZrB2 Particles on Microstructure and Mechanical Properties of AA6061 Metal Matrix Composites
,”
Mater. Sci. Eng. A
,
528
(
18
), pp.
5733
5740
.
9.
Gaurav
,
G.
, and
Mohan
,
A.
,
2015
, “
Effect of ZrB2 Particles on the Microstructure and Mechanical Properties of Hybrid (ZrB2+Al3Zr)/AA5052 In Situ Composites
,”
J. Alloys Compd.
,
649
, pp.
174
183
.
10.
Kumar
,
S.
, and
Balasubramanian
,
V.
,
2010
, “
Effect of Reinforcement Size and Volume Fraction on the Abrasive Wear Behaviour of AA7075Al/SiCp P/M Composites—A Statistical Analysis
,”
Tribol. Int.
,
43
, pp.
414
422
.
11.
Degnan
,
C. C.
,
Shipway
,
P. H.
, and
Wood
,
J. V.
,
2001
, “
Elevated Temperature Sliding Wear Behavior of TiC-Reinforced Steel Matrix Composites
,”
Wear
,
251
, pp.
1444
1451
.
12.
Prassad
,
S. V.
, and
Asthana
,
R.
,
2004
, “
Aluminum Metal-Matrix Composites for Automotive Applications: Tribological Considerations
,”
Tribol. Lett.
,
17
(
3
), pp.
445
452
.
13.
Kumar
,
S.
, and
Balasubramanian
,
V.
,
2008
, “
Developing a Mathematical Model to Evaluate Wear Rate of Al7075/SiCp Powder Metallurgy Composites
,”
Wear
,
264
, pp.
1026
1034
.
14.
Hassan
,
A. M.
,
Alrashdan
,
A.
,
Hayajneh
,
M. T.
, and
Mayyas
,
A. T.
,
2009
, “
Wear Behavior of Al–Mg–Cu-Based Composites Containing SiC Particles
,”
Tribol. Int.
,
42
(
8
), pp.
1230
1238
.
15.
Iwai
,
Y.
,
Honda
,
T.
,
Miyajima
,
T.
,
Iwasaki
,
Y.
,
Surappa
,
M. K.
, and
Xu
,
J. F.
,
2000
, “
Dry Sliding Wear Behavior of Al2O3 Fiber Reinforced Aluminum Composites
,”
Compos. Sci. Technol.
,
60
(
9
), pp.
1781
1789
.
16.
Ramesh
,
C. S.
,
Keshavamurthy
,
R.
,
Channabasappa
,
B. H.
, and
Pramod
,
S.
,
2010
, “
Friction and Wear Behavior of Ni-P Coated Si3N4 Reinforced Al6061 Composites
,”
Tribol. Int.
,
43
(
3
), pp.
623
634
.
17.
Kumar
,
N.
,
Gautam
,
R. K.
, and
Mohan
,
S.
,
2015
, “
Wear and Friction Behavior of In-Situ AA5052/ZrB2 Composites Under Dry Sliding Conditions
,”
Tribol. Ind.
,
37
, pp.
244
256
.
18.
Natarajan
,
S.
,
Narayanasamy
,
R.
,
Kumaresh Babu
,
S. P.
,
Dinesh
,
G.
,
Anil Kumar
,
B.
, and
Sivaprasad
,
K.
,
2009
, “
Sliding Wear Behaviour of Al 6063/TiB2 In Situ Composites at Elevated Temperatures
,”
Mater. Des.
,
30
(
7
), pp.
2521
2531
.
19.
Kumar
,
S.
,
Subramanya Sarma
,
V.
, and
Murty
,
B. S.
,
2009
, “
Effect of Temperature on the Wear Behaviour of Al-7Si-TiB2 In-Situ Composites
,”
Metall. Mater. Trans. A
,
40A
, pp.
223
231
.
20.
Zhu
,
H.
,
Jar
,
C.
,
Song
,
J.
,
Zhao
,
J.
,
Li
,
J.
, and
Xie
,
Z.
,
2012
, “
High Temperature Dry Sliding Friction and Wear Behaviour of Aluminium Matrix Composites (Al3Zr+α-Al2O3)/Al
,”
Tribol. Int.
,
48
, pp.
78
86
.
21.
Michael Rajan
,
H. B.
,
Ramabalan
,
S.
,
Dinaharan
,
I.
, and
Vijay
,
S. J.
,
2014
, “
Effect of TiB2 Content and Temperature on Sliding Wear Behaviour of AA7075/TiB2 In Situ Aluminium Cast Composites
,”
Arch. Civ. Mech. Eng.
,
14
(
1
), pp.
72
79
.
22.
Zhang
,
X.
,
Xu
,
L.
,
Du
,
S.
,
Han
,
J.
,
Hu
,
P.
, and
Han
,
W.
,
2008
, “
Fabrication and Mechanical Properties of ZrB2-SiCw Ceramic Matrix Composite
,”
Mater. Lett.
,
62
, pp.
1058
1060
.
23.
Zhang
,
X.
,
Luo
,
X.
,
Li
,
J.
,
Han
,
J.
,
Han
,
W.
, and
Hong
,
C.
,
2009
, “
Structure and Bonding Features of ZrB2 (0001) Surface
,”
Comput. Mater. Sci.
,
46
(
1
), pp.
1
6
.
24.
Tian
,
K.
,
Zhao
,
Y.
,
Jiao
,
L.
,
Zhang
,
S.
,
Zhang
,
Z.
, and
Wu
,
X.
,
2014
, “
Effects of In Situ Generated ZrB2 Nano-Particles on Microstructure and Tensile Properties of 2024Al Matrix Composites
,”
J. Alloy Compd.
,
594
, pp.
1
6
.
25.
Ramesh
,
C. S.
,
Ahamed
,
A.
,
Channabasappa
,
B. H.
, and
Keshavamurthy
,
R.
,
2010
, “
Development of Al 6063–TiB2 In Situ Composites
,”
Mater. Des.
,
31
(
4
), pp.
2230
2236
.
26.
Han
,
Y.
,
Liu
,
X.
, and
Bian
,
X.
,
2002
, “
In-Situ TiB2 Particle Reinforced Near Eutectic Al Si Alloy Composites
,”
Composites, Part A
,
33
(
3
), pp.
439
444
.
27.
Yi
,
H.
,
Ma
,
N.
,
Ma
,
Y.
,
Zhang
,
Y.
,
Li
,
X.
, and
Wang
,
H.
,
2006
, “
Effective Elastic Moduli of Al–Si Composites Reinforced With In-Situ Particles
,”
Scr. Mater.
,
54
(
6
), pp.
1093
1097
.
28.
Archard
,
J. F.
,
1953
, “
Contact and Rubbing of Flat Surfaces
,”
J. Appl. Phys.
,
24
(
8
), pp.
981
988
.
29.
Kumar
,
S.
,
Subramanya
,
V. S.
, and
Murty
,
B. S.
,
2010
, “
High Temperature Wear Behaviour of Al–4Cu–TiB2 In Situ Composites
,”
Wear
,
268
, pp.
1266
1274
.
30.
Singh
,
J.
, and
Alpas
,
A. T.
,
1995
, “
Elevated Temperature Wear of Al6061 and Al6061-20% Al2O3
,”
Scr. Metall.
,
32
(
7
), pp.
1099
1105
.
31.
Demirel
,
M.
, and
Muratoglu
,
M.
,
2011
, “
Influence of Load and Temperature on the Dry Sliding Wear Behaviour of Aluminium-Ni3Al Composites
,”
Indian J. Eng. Mater. Sci.
,
18
, pp.
268
282
.
32.
Tu
,
J. P.
,
Meng
,
L.
, and
Liu
,
M. S.
,
1998
, “
Friction and Wear Behavior of Cu Fe3Al Powder Metallurgical Composites in Dry Sliding
,”
Wear
,
220
(
1
), pp.
72
79
.
33.
Mandal
,
A.
,
Chakraborty
,
M.
, and
Murty
,
B. S.
,
2007
, “
Effect of TiB2 Particles on Sliding Wear Behaviour of Al–4Cu Alloy
,”
Wear
,
262
, pp.
160
166
.
34.
Mandal
,
A.
,
Maiti
,
R.
,
Chakraborty
,
M.
, and
Murty
,
B. S.
,
2004
, “
Effect of TiB2 Particles on Aging Response of Al–4Cu Alloy
,”
Mater. Sci. Eng. A
,
386
, pp.
296
300
.
You do not currently have access to this content.