Elastohydrodynamic lubrication (EHL) is a common mode of fluid-film lubrication in which many machine elements operate. Its thermal behavior is an important concern especially for components working under extreme conditions such as high speeds, heavy loads, and surfaces with significant roughness. Previous thermal EHL (TEHL) studies focused only on the cases with smooth surfaces under the full-film lubrication condition. The present study intends to develop a more realistic unified TEHL model for point contact problems that is capable of simulating the entire transition of lubrication status from the full-film and mixed lubrication all the way down to boundary lubrication with real machined roughness. The model consists of the generalized Reynolds equation, elasticity equation, film thickness equation, and those for lubricant rheology in combination with the energy equation for the lubricant film and the surface temperature equations. The solution algorithms based on the improved semi-system approach have demonstrated a good ability to achieve stable solutions with fast convergence under severe operating conditions. Lubricant film thickness variation and temperature rises in the lubricant film and on the surfaces during the entire transition have been investigated. It appears that this model can be used to predict mixed TEHL characteristics in a wide range of operating conditions with or without three-dimensional (3D) surface roughness involved. Therefore, it can be employed as a useful tool in engineering analyses.

References

References
1.
Cheng
,
H. S.
, and
Sternlicht
,
B.
,
1964
, “
A Numerical Solution for the Pressure, Temperature, and Film Thickness Between Two Infinitely Long Lubricated Rolling and Sliding Cylinders Under Heavy Loads
,”
ASME J. Basic Eng.
,
87
, pp.
695
707
.
2.
Dowson
,
D.
, and
Whitaker
,
A. V.
,
1966
, “
A Numerical Procedure for the Solution of the Elastohydrodynamic Problem of Rolling and Sliding Contacts Lubricated by a Newtonian Fluid
,”
Proc. Inst. Mech. Eng.
,
180
(
3B
), pp.
119
134
.
3.
Zhu
,
D.
, and
Wen
,
S. Z.
,
1984
, “
A Full Numerical Solution for the Thermoelasto-Hydrodynamic Problems in Elliptical Contacts
,”
ASME J. Tribol.
,
106
(
2
), pp.
246
254
.
4.
Kim
,
K. H.
, and
Sadeghi
,
F.
,
1992
, “
Three-Dimensional Temperature Distribution in EHD Lubrication—Part Ι: Circular Contact
,”
ASME J. Tribol.
,
114
(
1
), pp.
32
41
.
5.
Guo
,
F.
,
Yang
,
P. R.
, and
Qu
,
S. Y.
,
2000
, “
On the Theory of Thermal Elastohydrodynamic Lubrication at High Slide-Roll Ratios—Circular Glass-Steel Contact Solution at Opposite Sliding
,”
ASME J. Tribol.
,
123
(
4
), pp.
816
821
.
6.
Yang
,
P.
,
Qu
,
S. Y.
,
Kaneta
,
M.
, and
Nishikawa
,
H.
,
2001
, “
Formation of Steady Dimples in Point TEHL Contacts
,”
ASME J. Tribol.
,
123
(
1
), pp.
42
49
.
7.
Kim
,
H. J.
,
Ehret
,
P.
,
Dowson
,
D.
, and
Taylor
,
C. M.
,
2001
, “
Thermal Elastohydrodynamic Analysis of Circular Contacts, Part I: Newtonian Model
,”
Proc. Inst. Mech. E., Part J
,
215
(
4
), pp.
339
352
.
8.
Liu
,
X. L.
,
Jiang
,
M.
,
Yang
,
P. R.
, and
Kaneta
,
M.
,
2005
, “
Non-Newtonian Thermal Analyses of Point EHL Contacts Using the Eyring Model
,”
ASME J. Tribol.
,
127
(
1
), pp.
70
81
.
9.
Habchi
,
W.
,
Eyheramendy
,
D.
,
Bair
,
S.
,
Vergne
,
P.
, and
Morales
,
G.
,
2008
, “
Thermal Elastohydrodynamic Lubrication of Point Contacts Using a Newtonian/Generalized Newtonian Lubricant
,”
Tribol. Lett.
,
30
(
1
), pp.
41
52
.
10.
Ai
,
X. L.
,
1993
, “
Numerical Analyses of Elastohydrodynamically Lubricated Line and Point Contacts With Rough Surfaces By Using Semi-System and Multigrid Methods
,”
Ph.D. thesis
, Northwestern University, Evanston, IL.
11.
Zhu
,
D.
, and
Hu
,
Y. Z.
,
1999
, “
The Study of Transition from Full Film Elastohydrodynamic to Mixed and Boundary Lubrication
,”
STLE/ASME
HS Cheng Tribology Surveillance, pp.
150
156
.
12.
Hu
,
Y. Z.
, and
Zhu
,
D.
,
2000
, “
A Full Numerical Solution to the Mixed Lubrication in Point Contacts
,”
ASME J. Tribol.
,
122
(
1
), pp.
1
9
.
13.
Zhu
,
D.
,
2007
, “
On Some Aspects of Numerical Solutions of Thin-Film and Mixed Elastohydrodynamic Lubrication
,”
Proc. Inst. Mech. Eng., Part J
,
221
(
5
), pp.
561
579
.
14.
Liu
,
S.
,
Wang
,
Q.
, and,
Liu
,
G.
,
2000
, “
A Versatile Method of Discrete Convolution and FFT (DC-FFT) for Contact Analyses
,”
Wear
,
243
(
1
), pp.
101
111
.
15.
Liu
,
S. B.
, and
Wang
,
Q.
,
2002
, “
Studying Contact Stress Fields Caused by Surface Tractions With a Discrete Convolution and Fast Fourier Transform Algorithm
,”
ASME J. Tribol.
,
124
(
1
), pp.
36
45
.
16.
Dowson
,
D.
,
1962
, “
A Generalized Reynolds Equation for Fluid Film Lubrication
,”
Int. J. Mech. Sci.
,
4
(
2
), pp.
159
170
.
17.
Yang
,
P. R.
, and
Wen
,
S. Z.
,
1990
, “
A Generalized Reynolds Equation for Non-Newtonian Thermal Elastohydrodynamic Lubrication
,”
ASME J. Tribol.
,
112
, pp.
631
636
.
18.
Greenwood
,
J. A.
,
2000
, “
Two-Dimensional Flow of a Non-Newtonian Lubricant
,”
Proc. Inst. Mech. Eng., Part J
,
214
(
1
), pp.
29
41
.
19.
Liu
,
Y. C.
,
Wang
,
Q.
,
Bair
,
S.
, and
Vergne
,
P.
,
2007
, “
A Quantitative Solution for the Full Shear-Thinning EHL Point Contact Problem Including Traction
,”
Tribol. Lett.
,
28
(
2
), pp.
171
181
.
20.
Liu
,
Y. C.
,
Wang
,
H.
,
Wang
,
W. Z.
,
Hu
,
Y. Z.
, and
Zhu
,
D.
,
2002
, “
Method Comparison in Computation of Temperature Rise on Frictional Interface
,”
Tribol. Int.
,
35
(
8
), pp.
549
560
.
21.
Liu
,
Y. C.
,
Wang
,
Q.
,
Wang
,
W. Z.
,
Hu
,
Y. Z.
, and
Zhu
,
D.
,
2006
, “
Effects of Differential Scheme and Mesh Density on EHL Film Thickness in Point Contacts
,”
ASME J. Tribol.
,
128
(
3
), pp.
641
653
.
22.
Wang
,
W. Z.
,
Wang
,
H
,
Liu
,
Y. C.
,
Hu
,
Y. Z.
, and
Zhu
,
D.
,
2003
, “
A Comparative Study of the Methods for Calculation of Surface Elastic Deformation
,”
Proc. Inst. Mech. Eng., Part J
,
217
(
2
), pp.
145
153
.
23.
Pu
,
W.
,
Wang
,
J. X.
, and
Zhu
,
D.
,
2016
Progressive Mesh Densification (PMD) Method for Numerical Solution of Mixed Elastohydrodynamic Lubrication
,”
ASME J. Tribol.
,
138
(
2
), p.
021502
.
24.
Zhu
,
D.
,
Liu
,
Y.
, and
Wang
,
Q.
,
2014
, “
On the Numerical Accuracy of Rough Surface EHL Solution
,”
Tribol. Trans.
,
57
(
4
), pp.
570
580
.
25.
Zhu
,
D.
, and
Ai
,
X. L.
,
1997
, “
Point Contact EHL Based on Optically Measured Three-Dimensional Rough Surfaces
,”
ASME J. Tribol.
,
119
(
3
), pp.
375
384
.
26.
Zhu
,
D.
, and
Wang
,
Q.
,
2013
, “
Effect of Roughness Orientation on the EHL Film Thickness
,”
ASME J. Tribol.
,
135
, p.
031501
.
27.
Zhu
,
D.
,
2003
, “
Effect of Surface Roughness on Mixed EHD Lubrication Characteristics
,”
Tribol. Trans.
,
46
(
1
), pp.
44
48
.
28.
Hamrock
,
B. J.
, and
Dowson
,
D.
,
1977
, “
Isothermal Elastohydrodynamic Lubrication of Point Contacts, Part 3—Fully Flooded Results
,”
ASME J. Lubr. Technol.
,
99
(
2
), pp.
264
276
.
29.
Murch
,
L. E.
, and
Wilson
,
W. R. D.
,
1975
, “
A Thermal Elastohydrodynamic Inlet Zone Analysis
,”
ASME J. Lubr. Technol.
,
97
(
2
), pp.
212
216
.
30.
Wilson
,
W. R. D.
, and
Sheu
,
S.
,
1983
, “
Effect of Inlet Shear Heating on EHD Film Thickness
,”
ASME J. Lubr. Technol.
,
105
(
2
), pp.
187
188
.
31.
Gupta
,
P. K.
,
Cheng
,
H. S.
,
Zhu
,
D.
,
Forster
,
N. H.
, and
Schrand
,
J. B.
,
1992
, “
Viscoelastic Effects in MIL-L-7808-Type Lubricant, Part I: Analytical Formulation
,”
Tribol. Trans.
,
35
(
2
), pp.
269
274
.
You do not currently have access to this content.