With a subscale rolling-sliding apparatus, the objective of this study is to explore the adhesion and rolling contact fatigue characteristics of wheel/rail rollers with sanding under water condition. Sanding improves adhesion coefficient but aggravates the surface damage of wheel and rail materials. With the particle diameter and feed rate increasing, the adhesion coefficient is further improved. However, the surface damage (spalling and pits) becomes severer as well as the surface roughness. Note that pitting is a special damage type when sanding is used to improve the adhesion. Big pits and fatigue cracks appear on subsurface under larger particle diameter and feed rate conditions. Severe cracks initiate from big pits and develop into material to a depth, which results in bulk material breaking.

References

References
1.
Wang
,
W. J.
,
Zhang
,
H. F.
,
Wang
,
H. Y.
,
Liu
,
Q. Y.
, and
Zhu
,
M. H.
,
2011
, “
Study on the Adhesion Behavior of Wheel/Rail Under Oil, Water and Sanding Conditions
,”
Wear
,
271
, pp.
2693
2698
.
2.
Saud
,
A.
,
Oyelayo
,
O. A.
,
George
,
R. F.
, and
Sudhir
,
K.
,
2003
, “
Investigation of Top of Rail Lubrication and Laser Glazing for Improved Railroad Energy Efficiency
,”
ASME J. Tribol.
,
125
(3), pp.
643
648
.
3.
Li
,
Z.
,
Arias-Cuevas
,
O.
,
Lewis
,
R.
, and
Gallardo-Hernández
,
E. A.
,
2009
, “
Rolling-Sliding Laboratory Tests of Friction Modifiers in Leaf Contaminated Wheel-Rail Contacts
,”
Tribol. Lett.
,
33
(
2
), pp.
97
109
.
4.
Lewis
,
R.
, and
Dwyer-Joyce
,
R. S.
,
2006
, “
Wear at the Wheel/Rail Interface When Sanding is Used to Increase Adhesion
,”
Proc. Inst. Mech. Eng., Part F
,
220
(
1
), pp.
29
41
.
5.
Zhang
,
W. H.
,
Chen
,
J. Z.
,
Wu
,
X. J.
, and
Jin
,
X. S.
,
2002
, “
Wheel/Rail Adhesion and Analysis by Using Full Scale Roller Rig
,”
Wear
,
253
, pp.
82
88
.
6.
Zhu
,
Y.
,
Olofsson
,
U.
, and
Nilsson
,
R.
,
2014
, “
A Field Test Study of Leaf Contamination on Railhead Surfaces
,”
Proc. Inst. Mech. Eng., Part F
,
228
(
1
), pp.
71
84
.
7.
Arias-Cuevas
,
O.
, and
Li
,
Z.
,
2011
, “
Field Investigations Into the Adhesion Recovery in Leaf-Contaminated Wheel-Rail Contacts With Locomotive Sanders
,”
Proc. Inst. Mech. Eng., Part F
,
225
(
5
), pp.
443
456
.
8.
Arias-Cuevas
,
O.
, and
Li
,
Z.
,
2011
, “
Field Investigations Into the Performance of Magnetic Track Brakes of an Electrical Multiple Unit Against Slippery Tracks. Part 1: Adhesion Improvement
,”
Proc. Inst. Mech. Eng., Part F
,
225
(
6
), pp.
613
636
.
9.
Chen
,
H.
,
Yoshimura
,
A.
, and
Ohyama
,
T.
,
1998
, “
Numerical Analysis for the Influence of Water Film on Adhesion Between Rail and Wheel
,”
Proc. Inst. Mech. Eng., Part J
,
212
(
5
), pp.
359
368
.
10.
Wu
,
B.
,
Wen
,
Z. F.
,
Wang
,
H. Y.
, and
Jin
,
X. S.
,
2014
, “
Numerical Analysis on Wheel/Rail Adhesion Under Mixed Contamination of Oil and Water With Surface Roughness
,”
Wear
,
314
, pp.
140
147
.
11.
Arias-Cuevas
,
O.
,
Li
,
Z.
, and
Lewis
,
R.
,
2011
, “
A Laboratory Investigation on the Influence of the Particle Size and Slip During Sanding on the Adhesion and Wear in the Wheel-Rail Contact
,”
Wear
,
271
, pp.
14
24
.
12.
Wang
,
W. J.
,
Wang
,
H. Y.
,
Guo
,
J.
,
Liu
,
Q. Y.
,
Zhu
,
M. H.
, and
Jin
,
X. S.
,
2014
, “
Experimental Investigation of Adhesion Coefficient of Wheel/Rail Under the Track Ramp Condition
,”
Proc. Inst. Mech. Eng., Part J
,
228
(
7
), pp.
808
815
.
13.
Zhu
,
Y.
,
Chen
,
X.
,
Wang
,
W.
, and
Yang
,
H.
,
2015
, “
A Study on Iron Oxides and Surface Roughness in Dry and Wet Wheel-Rail Contacts
,”
Wear
,
328–329
, pp.
241
248
.
14.
Niccolini
,
E.
, and
Berthier
,
Y.
,
2005
, “
Wheel–Rail Adhesion: Laboratory Study of ‘Natural' Third Body Role on Locomotives Wheels and Rails
,”
Wear
,
258
, pp.
1172
1178
.
15.
Chen
,
H.
,
Ban
,
T.
,
Ishida
,
M.
, and
Nakahara
,
T.
,
2008
, “
Experimental Investigation of Influential Factors on Adhesion Between Wheel and Rail Under Wet Conditions
,”
Wear
,
265
, pp.
1504
1511
.
16.
Olofsson
,
U.
, and
Sundvall
,
K.
,
2004
, “
Influence of Leaf, Humidity and Applied Lubrication on Friction in the Wheel-Rail Contact: Pin-on-Disc Experiments
,”
Proc. Inst. Mech. Eng., Part F
,
218
(
3
), pp.
235
242
.
17.
Wang
,
W. J.
,
Wang
,
H.
,
Wang
,
H. Y.
,
Guo
,
J.
,
Liu
,
Q. Y.
,
Zhu
,
M. H.
, and
Jin
,
X. S.
,
2013
, “
Sub-Scale Simulation and Measurement of Rail Road Wheel/Rail Adhesion Under Dry and Wet Conditions
,”
Wear
,
302
, pp.
1461
1467
.
18.
Cao
,
X.
,
Huang
,
W. L.
,
He
,
C. G.
,
Peng
,
J. F.
,
Guo
,
J.
,
Wang
,
W. J.
,
Liu
,
Q. Y.
, and
Zhu
,
M. H.
,
2016
, “
The Effect of Alumina Particle on Improving Adhesion and Wear Damage of Wheel/Rail Under Wet Conditions
,”
Wear
,
348–349
, pp.
98
115
.
19.
Arias-Cuevas
,
O.
,
Li
,
Z.
, and
Lewis
,
R.
,
2010
, “
Investigating the Lubricity and Electrical Insulation Caused by Sanding in Dry Wheel-Rail Contacts
,”
Tribol. Lett.
,
37
(
3
), pp.
623
635
.
20.
Wang
,
W. J.
,
Liu
,
T. F.
,
Wang
,
H. Y.
,
Liu
,
Q. Y.
,
Zhu
,
M. H.
, and
Jin
,
X. S.
,
2014
, “
Influence of Friction Modifiers on Improving Adhesion and Surface Damage of Wheel/Rail Under Low Adhesion Conditions
,”
Tribol. Int.
,
75
, pp.
16
23
.
21.
Gallardo-Hernández
,
E. A.
, and
Lewis
,
R.
,
2008
, “
Twin Disc Assessment of Wheel/Rail Adhesion
,”
Wear
,
265
, pp.
1309
1316
.
22.
Kumar
,
S.
,
Krishnamoorthy
,
P. K.
, and
Rao
,
D. L. P.
,
1986
, “
Wheel-Rail Wear and Adhesion With and Without Sand for North American Locomotive
,”
J. Eng. Ind.
,
108
(
2
), pp.
141
147
.
23.
Omasta
,
M.
,
Machatka
,
M.
,
Smejkal
,
D.
,
Hartin
,
M.
, and
Křupka
,
I.
,
2015
, “
Influence of Sanding Parameters on Adhesion Recovery in Contaminated Wheel-Rail Contact
,”
Wear
,
322–323
, pp.
218
225
.
24.
Lewis
,
R.
, and
Masing
,
J.
,
2006
, “
Static Wheel/Rail Contact Isolation Due to Track Contamination
,”
Proc. Inst. Mech. Eng., Part F
,
220
(
1
), pp.
43
53
.
25.
Carroll
,
R. I.
, and
Beynon
,
J. H.
,
2006
, “
Decarburisation and Rolling Contact Fatigue of a Rail Steel
,”
Wear
,
260
, pp.
523
537
.
26.
Arias-Cuevas
,
O.
,
Li
,
Z.
,
Lewis
,
R.
, and
Gallardo-Hernández
,
E. A.
,
2010
, “
Rolling-Sliding Laboratory Tests of Friction Modifiers in Dry and Wet Wheel-Rail Contacts
,”
Wear
,
268
, pp.
543
551
.
27.
Eadie
,
D. T.
,
Elvidge
,
D.
,
Oldknow
,
K.
,
Stock
,
R.
,
Pointner
,
P.
,
Kalousek
,
J.
, and
Klauser
,
P.
,
2008
, “
The Effects of Top of Rail Friction Modifier on Wear and Rolling Contact Fatigue: Full-Scale Rail–Wheel Test Rig Evaluation, Analysis and Modelling
,”
Wear
,
265
, pp.
1222
1230
.
28.
Dollevoet
,
R.
,
Li
,
Z.
, and
Arias-Cuevas
,
O.
,
2010
, “
A Method for the Prediction of Head Checking Initiation Location and Orientation Under Operational Loading Conditions
,”
Proc. Inst. Mech. Eng., Part F
,
224
(
5
), pp.
369
374
.
29.
Zhou
,
Y.
,
Wang
,
S. F.
,
Wang
,
T. Y.
,
Xu
,
Y. D.
, and
Li
,
Z.
,
2014
, “
Field and Laboratory Investigation of the Relationship Between Rail Head Check and Wear in a Heavy-Haul Railway
,”
Wear
,
315
, pp.
68
77
.
30.
Li
,
Z.
,
Dollevoet
,
R.
,
Molodova
,
M.
, and
Zhao
,
X.
,
2011
, “
Squat Growth-Some Observations and the Validation of Numerical Predictions
,”
Wear
,
271
, pp.
148
157
.
You do not currently have access to this content.