Large bearings employed in wind turbine applications have half-contact widths that are usually greater than 1 mm. Previous numerical models developed to investigate rolling contact fatigue (RCF) require significant computational effort to study large rolling contacts. This work presents a new computationally efficient approach to investigate RCF life scatter and spall formation in large bearings. The modeling approach incorporates damage mechanics constitutive relations in the finite element (FE) model to capture fatigue damage. It utilizes Voronoi tessellation to account for variability occurring due to the randomness in the material microstructure. However, to make the model computationally efficient, a Delaunay triangle mesh was used in the FE model to compute stresses during a rolling contact pass. The stresses were then mapped onto the Voronoi domain to evaluate the fatigue damage that leads to the formation of surface spall. The Delaunay triangle mesh was dynamically refined around the damaged elements to capture the stress concentration accurately. The new approach was validated against previous numerical model for small rolling contacts. The scatter in the RCF lives and the progression of fatigue spalling for large bearings obtained from the model show good agreement with experimental results available in the open literature. The ratio of L10 lives for different sized bearings computed from the model correlates well with the formula derived from the basic life rating for radial roller bearing as per ISO 281. The model was then extended to study the effect of initial internal voids on RCF life. It was found that for the same initial void density, the L10 life decreases with the increase in the bearing size.

References

References
1.
Harris
,
T. A.
,
2001
,
Rolling Bearing Analysis
,
Wiley
,
New York
.
2.
Littmann
,
W. E.
,
1969
, “
The Mechanism of Contact Fatigue
,” NASA Special Report, Report No. SP-237.
3.
Littmann
,
W. E.
, and
Widner
,
R. L.
,
1966
, “
Propagation of Contact Fatigue From Surface and Subsurface Origins
,”
ASME J. Basic Eng.
,
88
(
3
), pp.
624
636
.
4.
Bower
,
A. F.
,
1988
, “
The Influence of Crack Face Friction and Trapped Fluid on Surface Initiated Rolling Contact Fatigue Cracks
,”
ASME J. Tribol.
,
110
(
4
), pp.
704
711
.
5.
Lundberg
,
G.
, and
Palmgren
,
A.
,
1949
, “
Dynamic Capacity of Rolling Bearings
,”
ASME J. Appl. Mech.
,
16
(
2
), pp.
165
172
.
6.
Ioannides
,
E.
, and
Harris
,
T. A.
,
1985
, “
A New Fatigue Life Model for Rolling Bearings
,”
ASME J. Tribol.
,
107
(
3
), pp.
367
377
.
7.
Sadeghi
,
F.
,
Jalalahmadi
,
B.
,
Slack
,
T. S.
,
Raje
,
N.
, and
Arakere
,
N. K.
,
2009
, “
A Review of Rolling Contact Fatigue
,”
ASME J. Tribol.
,
131
(
4
), p.
041403
.
8.
Alley
,
E. S.
, and
Neu
,
R. W.
,
2010
, “
Microstructure-Sensitive Modeling of Rolling Contact Fatigue
,”
Int. J. Fatigue
,
32
(
5
), pp.
841
850
.
9.
Panasyuk
,
V. V.
,
Datsyshyn
,
O. P.
, and
Marchenko
,
H. P.
,
1995
, “
The Crack Propagation Theory Under Rolling Contact
,”
Eng. Fract. Mech.
,
52
(
1
), pp.
179
191
.
10.
Keer
,
L. M.
, and
Bryant
,
M. D.
,
1983
, “
A Pitting Model for Rolling Contact Fatigue
,”
ASME J. Tribol.
,
105
(
2
), pp.
198
205
.
11.
Miyashita
,
Y.
,
Yoshimura
,
Y.
,
Xu
,
J. Q.
,
Horikoshi
,
M.
, and
Mutoh
,
Y.
,
2003
, “
Subsurface Crack Propagation in Rolling Contact Fatigue of Sintered Alloy
,”
JSME Int. J. Ser. A
,
46
(
3
), pp.
341
347
.
12.
Miller
,
K. J.
,
1999
, “
A Historical Perspective of the Important Parameters of Metal Fatigue and Problems for the Next Century
,”
Seventh International Fatigue Congress
, Beijing, pp.
15
39
.
13.
Espinosa
,
H. D.
, and
Zavattieri
,
P. D.
,
2003
, “
A Grain Level Model for the Study of Failure Initiation and Evolution in Polycrystalline Brittle Materials—Part I: Theory and Numerical Implementation
,”
Mech. Mater.
,
35
(3–6), pp.
333
364
.
14.
Jalalahmadi
,
B.
, and
Sadeghi
,
F.
,
2009
, “
A Voronoi Finite Element Study of Fatigue Life Scatters in Rolling Contacts
,”
ASME J. Tribol.
,
131
(
2
), p.
022203
.
15.
Raje
,
N.
,
Sadeghi
,
F.
, and
Rateick
,
R. G.
, Jr.
,
2008
, “
A Statistical Damage Mechanics Model for Subsurface Initiated Spalling in Rolling Contacts
,”
ASME J. Tribol.
,
130
(
4
), p.
042201
.
16.
Jalalahmadi
,
B.
, and
Sadeghi
,
F.
,
2010
, “
A Voronoi FE Fatigue Damage Model for Life Scatter in Rolling Contacts
,”
ASME J. Tribol.
,
132
(
2
), p.
021404
.
17.
Slack
,
T.
, and
Sadeghi
,
F.
,
2010
, “
Explicit Finite Element Modeling of Subsurface Initiated Spalling in Rolling Contacts
,”
Tribol. Int.
,
43
(
9
), pp.
1693
1702
.
18.
Weinzapfel
,
N.
, and
Sadeghi
,
F.
,
2013
, “
Numerical Modeling of Sub-Surface Initiated Spalling in Rolling Contacts
,”
Tribol. Int.
,
59
, pp.
210
221
.
19.
Bomidi
,
J. A.
,
Weinzapfel
,
N.
,
Sadeghi
,
F.
,
Liebel
,
A.
, and
Weber
,
J.
,
2013
, “
An Improved Approach for 3D Rolling Contact Fatigue Simulations With Microstructure Topology
,”
Tribol. Trans.
,
56
(
3
), pp.
385
399
.
20.
Lemaître
,
J.
,
1992
,
A Course on Damage Mechanics
,
Springer-Verlag
,
Berlin
.
21.
Kim
,
T. H.
,
Olver
,
A. V.
, and
Pearson
,
P. K.
,
2001
, “
Fatigue and Fracture Mechanisms in Large Rolling Element Bearings
,”
Tribol. Trans.
,
44
(
4
), pp.
583
590
.
22.
Shewchuk
,
J. R.
,
1996
, “
Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator
,”
Applied Computational Geometry Towards Geometric Engineering
,
Springer
,
Berlin
, pp.
203
222
.
23.
Ito
,
O.
, and
Fuller
,
E. R.
,
1993
, “
Computer Modelling of Anisotropic Grain Microstructure in Two Dimensions
,”
Acta Metall. Mater.
,
41
(
1
), pp.
191
198
.
24.
Warhadpande
,
A.
,
Jalalahmadi
,
B.
,
Slack
,
T.
, and
Sadeghi
,
F.
,
2010
, “
A New Finite Element Fatigue Modeling Approach for Life Scatter in Tensile Steel Specimens
,”
Int. J. Fatigue
,
32
(
4
), pp.
685
697
.
25.
Bomidi
,
J. A.
,
Weinzapfel
,
N.
,
Wang
,
C. P.
, and
Sadeghi
,
F.
,
2012
, “
Experimental and Numerical Investigation of Fatigue of Thin Tensile Specimen
,”
Int. J. Fatigue
,
44
, pp.
116
130
.
26.
Przybyla
,
C. P.
, and
McDowell
,
D. L.
,
2010
, “
Microstructure-Sensitive Extreme Value Probabilities for High Cycle Fatigue of Ni-Base Super Alloy IN100
,”
Int. J. Plast.
,
26
(
3
), pp.
372
394
.
27.
Slack
,
T. S.
,
Leonard
,
B. D.
, and
Sadeghi
,
F.
,
2013
, “
Estimating Life Scatter in Fretting Fatigue Crack Initiation
,”
Tribol. Trans.
,
56
(
4
), pp.
531
535
.
28.
Mücklich
,
F.
,
Ohser
,
J.
, and
Schneider
,
G.
,
1997
, “
The Characterization of Homogeneous Polyhedral Microstructures Applying the Spatial Poisson-Voronoi Tessellation Compared to the Standard DIN 50601
,”
Z. Metallkd.
,
88
(
1
), pp.
27
32
.
29.
Callister
,
W. D.
, Jr.
,
2000
,
Material Science and Engineering: An Introduction
,
5th ed.
,
Wiley
,
New York
, pp.
51
52
.
30.
Kachanov
,
L. M.
,
1958
, “
Time of the Rupture Process Under Creep Conditions
,”
Isv. Akad. Nauk. SSR. Otd Tekh. Nauk
,
8
, pp.
26
31
.
31.
Bolotin
,
V. V.
, and
Belousov
,
I. L.
,
2001
, “
Early Fatigue Crack Growth as the Damage Accumulation Process
,”
Probab. Eng. Mech.
,
16
(
4
), pp.
279
287
.
32.
Styri
,
H.
,
1951
, “
Fatigue Strength of Ball Bearing Races and Heat-Treated 52100 Steel Specimens
,”
Proc. ASTM
,
51
, pp.
682
700
.
33.
Lemaitre
,
J.
,
1985
, “
A Continuous Damage Mechanics Model for Ductile Fracture
,”
ASME J. Eng. Mater. Technol.
,
107
(
1
), pp.
83
89
.
34.
Bomidi
,
J. A.
,
Weinzapfel
,
N.
,
Slack
,
T.
,
Moghaddam
,
S. M.
,
Sadeghi
,
F.
,
Liebel
,
A.
,
Weber
,
J.
, and
Kreis
,
T.
,
2013
, “
Experimental and Numerical Investigation of Torsion Fatigue of Bearing Steel
,”
ASME J. Tribol.
,
135
(
3
), p.
031103
.
35.
Barnsby
,
R. M.
, ed.,
2003
,
Life Ratings for Modern Rolling Bearings: A Design Guide for the Application of International Standard ISO 281/2
, Vol.
1
,
American Society of Mechanical Engineers
,
New York
.
36.
Tallian
,
T. E.
,
1999
,
Failure Atlas for Hertz Contact Machine Elements
,
American Society of Mechanical Engineers
,
New York
.
37.
Lou
,
B.
,
Han
,
L.
,
Lu
,
Z.
,
Liu
,
S.
, and
Shen
,
F.
,
1990
, “
The Rolling Contact Fatigue Behaviors in Carburized and Hardened Steel
,”
Fourth International Conference on Fatigue and Fatigue Thresholds
, Honolulu, HI, pp.
627
632
.
38.
Harris
,
T. A.
, and
Barnsby
,
R. M.
,
2001
, “
Life Ratings for Ball and Roller Bearings
,”
Proc. Inst. Mech. Eng., Part J
,
215
(
6
), pp.
577
595
.
39.
Ai
,
X.
,
2015
, “
A Comprehensive Model for Assessing the Impact of Steel Cleanliness on Bearing Performance
,”
ASME J. Tribol.
,
137
(
1
), p.
011101
.
40.
Chen
,
Q.
,
Shao
,
E.
,
Zhao
,
D.
,
Guo
,
J.
, and
Fan
,
Z.
,
1991
, “
Measurement of the Critical Size of Inclusions Initiating Contact Fatigue Cracks and Its Application in Bearing Steel
,”
Wear
,
147
(
2
), pp.
285
294
.
You do not currently have access to this content.