Aerodynamic slider bearings are currently used in various types of turbomachinery. Many such systems perform at increasingly faster speeds and may operate in the supersonic regime. Although there is extensive research on compressible lubrication extrapolated to high-speeds, very little of it addresses the potential supersonic nature of the flow. It is well known in compressible flow that many of the tendencies of subsonic flow actually reverse themselves as the singularity at Mach one is traversed. Thus, examination of this high-speed regime may yield some unanticipated results. The behavior of a thin film of air in the supersonic regime is studied in the two-dimensional flow case with rigid sliding surfaces. The one-dimensional bearing studied has a dual profile consisting of an inlet region converging wedge of constant slope and an exit region of constant gap. Two approaches are compared: the solution of a modified Reynolds equation, and the solution to a version of Navier–Stokes equations adapted to thin films. The results show that the modified Reynolds equation approach, which is useful to describe the behavior of lubricating fluids at high subsonic speeds may be inadequate in the supersonic regime. The present studies show the absence of shock and expansion wave phenomena for cases in which the film thickness ratio does not exceed 0.01.

References

References
1.
Heshmat
,
H.
, and
Hermel
,
P.
,
1993
, “
Compliant Foil Bearings Technology and Their Applications to High Speed Turbomachinery
,”
Tribol. Ser.
,
25
, pp.
559
575
.
2.
Ng
,
C. W.
, and
Pan
,
C. H. T.
,
1965
, “
A Linearized Turbulent Lubrication Theory
,”
ASME J. Basic Eng.
,
87
(
3
), pp.
675
682
.
3.
Constantinescu
,
V. N.
,
1970
, “
On the Influence of Inertia Forces in Turbulent and Laminar Self-Acting Films
,”
ASME J. Lubr. Technol.
,
92
(
3
), pp.
473
480
.
4.
Frene
,
J.
, and
Constantinescu
, V
. N.
,
1996
, “
Non-Laminar Flow in Hydrodynamic Lubrication
,”
Tribol. Ser.
,
31
, pp.
319
333
.
5.
Tichy
,
J.
,
Bou-Said
,
B.
, and
DuPuy
,
F.
,
2015
, “
High Speed Subsonic Compressible Lubrication
,”
ASME J. Tribol.
,
137
(
4
), p.
041702
.
6.
Bruckner
,
R. J.
,
2012
, “
Performance of Simple Gas Foil Thrust Bearing in Air
,”
Report No. NASA/TM—2012-217262
.
7.
Dowson
,
D.
,
1969
, “
Laboratory Experiments and Demonstrations in Tribology: 7-Externally Pressurised Air Lubricated Thrust Bearings
,”
Tribology
,
2
(
4
), pp.
217
220
.
8.
Mori
,
H.
,
1961
, “
A Theorical Investigation of Pressure Depression in Externally Pressurised Gas Lubricated Thrust Bearings
,”
ASME J. Basic Eng.
,
83
(2), pp.
204
208
.
9.
Eleshaky
,
M. E.
,
2009
, “
CFD Investigation of Pressure Depressions in Aerostatic Circular Thrust Bearings
,”
Tribol. Int.
,
42
(
7
), pp.
1108
1117
.
10.
Miyake
,
Y.
,
Inaba
,
T.
,
Kubo
,
N.
, and
Takeoka
,
J.
,
1985
, “
An Experimental Study on Externally Pressurized Supersonic Gas Thrust Bearings
,”
ASME J. Tribol.
,
107
(
1
), pp.
122
127
.
11.
Yoshimoto
,
S.
,
Yamamoto
,
M.
, and
Toda
,
K.
,
2007
, “
Numerical Calculations of Pressure Distribution in the Bearing Clearance of Circular Aerostatic Thrust Bearings With a Single Air Supply Inlet
,”
ASME J. Tribol.
,
129
(
2
), pp.
384
390
.
12.
Dowson
,
D.
,
1962
, “
A Generalized Reynolds Equation for Fluid-Film Lubrication
,”
Int. J. Mech. Sci.
,
4
(
2
), pp.
159
170
.
13.
Hirsch
,
1990
,
Numerical Computation of Internal and External Flows
,
Butterworth-Heinemann
,
London
.
14.
Brunetiere
,
N.
, and
Tournerie
,
B.
,
2007
, “
Finite Element Solution of Inertia Influenced Flow in Thin Fluid Films
,”
ASME J. Tribol.
,
129
(
4
), pp.
876
886
.
15.
Thomas
,
S.
,
2006
, “
Modélisation numérique du comportement thermoaérodynamique des garnitures d'étanchéité pour les gaz réels hautes pressions
,” Ph.D. dissertation, Université de Poitiers, Poitiers, France.
16.
Szeri
,
A.
,
1998
,
Fluid Film Lubrication: Theory and Design
,
Reissue edition
,
Cambridge University Press
, Cambridge, UK.
17.
Brunetiere
,
N.
,
2010
, “
Les garnitures mécaniques. Etude théorique et expérimentale, Mechanics
,” Doctoral thesis, Université de Poitiers, Poitiers, France.
18.
Crespo
,
M.
,
2009
, “
Etude de l'Interaction entre une Onde de Choc et une Turbulence Cisaillée en Presence de Gradients Moyens de Temperature et de Masse Volumique
,” Ph.D. dissertation, Université de Toulouse, Toulouse, France.
19.
Courant
,
R.
, and
Friedrichs
,
K.
,
1976
, “
Supersonic Flow and Shock Waves
,”
Applied Mathematical Science
, Vol.
21
,
J. L.
Sirovich
,
J.
Fritz
, and
J. E.
Marsden
, eds.,
Springer-Verlag
,
London
.
20.
Liu
,
X. D.
,
Osher
,
S.
, and
Chan
,
T.
,
1994
, “
Weighted Essentially Non-Oscillatory Schemes
,”
J. Comput. Phys.
,
115
(
1
), pp.
200
212
.
21.
Harten
,
A.
,
1997
, “
High Resolution Schemes for Hyperbolic Conservation Laws
,”
J. Comput. Phys.
,
135
, pp.
260
278
.
22.
Thompson
,
K. W.
,
1987
, “
Time Dependent Boundary Conditions for Hyperbolic Systems
,”
J. Comput. Phys.
,
68
(
1
), pp.
1
24
.
23.
Thompson
,
K. W.
,
1990
, “
Time-Dependent Boundary Conditions for Hyperbolic Systems, II
,”
J. Comput. Phys.
,
89
(
2
), pp.
439
461
.
24.
Gross
,
W. A.
,
1962
,
Gas Film Lubrication
,
Wiley
,
New York
.
25.
Safar
,
Z. S.
, and
Shawki
,
G. S. A.
,
1978
, “
Do Convective Inertia Forces Affect Turbulent Bearings Charateristics?
,”
Tribol. Int.
,
11
(
4
), pp.
248
249
.
26.
Tieu
,
A. K.
,
1987
, “
Turbulence and Inertia Effects in Finite Width Stepped Thrust Bearings
,”
Tribol. Ser.
,
11
, pp.
411
416
.
You do not currently have access to this content.