This paper describes a new method, based on a recent analytical model (Hertzian biphasic theory (HBT)), to simultaneously quantify cartilage contact modulus, tension modulus, and permeability. Standard Hertzian creep measurements were performed on 13 osteochondral samples from three mature bovine stifles. Each creep dataset was fit for material properties using HBT. A subset of the dataset (N = 4) was also fit using Oyen's method and FEBio, an open-source finite element package designed for soft tissue mechanics. The HBT method demonstrated statistically significant sensitivity to differences between cartilage from the tibial plateau and cartilage from the femoral condyle. Based on the four samples used for comparison, no statistically significant differences were detected between properties from the HBT and FEBio methods. While the finite element method is considered the gold standard for analyzing this type of contact, the expertise and time required to setup and solve can be prohibitive, especially for large datasets. The HBT method agreed quantitatively with FEBio but also offers ease of use by nonexperts, rapid solutions, and exceptional fit quality (R2 = 0.999 ± 0.001, N = 13).

References

References
1.
Kempson
,
G. E.
,
Swanson
,
S. A. V.
,
Spivey
,
C. J.
, and
Freeman
,
M. A. R.
,
1971
, “
Patterns of Cartilage Stiffness on Normal and Degenerate Human Femoral Heads
,”
J. Biomech.
,
4
(
6
), pp.
597
609
.
2.
Kempson
,
G. E.
,
Freeman
,
M. A. R.
, and
Swanson
,
S. A. V.
,
1971
, “
Determination of a Creep Modulus for Articular Cartilage From Indentation Tests on Human Femoral Head
,”
J. Biomech.
,
4
(
4
), pp.
239
250
.
3.
Parsons
,
J. R.
, and
Black
,
J.
,
1977
, “
Viscoelastic Shear Behavior of Normal Rabbit Articular-Cartilage
,”
J. Biomech.
,
10
(
1
), pp.
21
29
.
4.
Elmore
,
S. M.
,
Carmeci
,
P.
,
Norris
,
G.
, and
Sokoloff
,
L.
,
1963
, “
Nature of Imperfect Elasticity of Articular Cartilage
,”
J. Appl. Physiol.
,
18
(
2
), pp.
393
396
.
5.
Hori
,
R. Y.
, and
Mockros
,
L. F.
,
1976
, “
Indentation Tests of Human Articular-Cartilage
,”
J. Biomech.
,
9
(
4
), pp.
259
268
.
6.
Coletti
,
J. M.
,
Woo
,
S. L. Y.
, and
Akeson
,
W. H.
,
1972
, “
Comparison of the Physical Behavior of Normal Articular Cartilage and the Arthroplasty Surface
,”
J. Bone Jt. Surg., Am.
,
54
(
1
), pp.
147
160
.
7.
Sokoloff
,
L.
,
1966
, “
Elasticity of Aging Cartilage
,”
Fed. Proc.
,
25
(
3
), pp.
1089
1095
.
8.
Hayes
,
W. C.
,
Herrmann
,
G.
,
Mockros
,
L. F.
, and
Keer
,
L. M.
,
1972
, “
Mathematical-Analysis for Indentation Tests of Articular-Cartilage
,”
J. Biomech.
,
5
(
5
), pp.
541
551
.
9.
McCutchen
,
C. W.
,
1962
, “
The Frictional Properties of Animal Joints
,”
Wear
,
5
(
1
), pp.
1
17
.
10.
McCutchen
,
C. W.
,
1959
, “
Sponge-Hydrostatic and Weeping Bearings
,”
Nature
,
184
(
4695
), pp.
1284
1285
.
11.
Armstrong
,
C. G.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1984
, “
An Analysis of the Unconfined Compression of Articular-Cartilage
,”
ASME J. Biomech. Eng.
,
106
(
2
), pp.
165
173
.
12.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
,
1980
, “
Biphasic Creep and Stress-Relaxation of Articular-Cartilage in Compression—Theory and Experiments
,”
ASME J. Biomech. Eng.
,
102
(
1
), pp.
73
84
.
13.
Mak
,
A. F.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1987
, “
Biphasic Indentation of Articular-Cartilage.1. Theoretical-Analysis
,”
J. Biomech.
,
20
(
7
), pp.
703
714
.
14.
Mow
,
V. C.
,
Gibbs
,
M. C.
,
Lai
,
W. M.
,
Zhu
,
W. B.
, and
Athanasiou
,
K. A.
,
1989
, “
Biphasic Indentation of Articular-Cartilage. 2. A Numerical Algorithm and an Experimental-Study
,”
J. Biomech.
,
22
(
8–9
), pp.
853
861
.
15.
Chan
,
E. P.
,
Hu
,
Y. H.
,
Johnson
,
P. M.
,
Suo
,
Z. G.
, and
Stafford
,
C. M.
,
2012
, “
Spherical Indentation Testing of Poroelastic Relaxations in Thin Hydrogel Layers
,”
Soft Matter
,
8
(
5
), pp.
1492
1498
.
16.
Bonnevie
,
E. D.
,
Baro
,
V. J.
,
Wang
,
L. Y.
, and
Burris
,
D. L.
,
2011
, “
In Situ Studies of Cartilage Microtribology: Roles of Speed and Contact Area
,”
Tribol. Lett.
,
41
(
1
), pp.
83
95
.
17.
Chen
,
X. M.
,
Dunn
,
A. C.
,
Sawyer
,
W. G.
, and
Sarntinoranont
,
M.
,
2007
, “
A Biphasic Model for Micro-Indentation of a Hydrogel-Based Contact Lens
,”
ASME J. Biomech. Eng.
,
129
(
2
), pp.
156
163
.
18.
Miller
,
G. J.
, and
Morgan
,
E. F.
,
2010
, “
Use of Microindentation to Characterize the Mechanical Properties of Articular Cartilage: Comparison of Biphasic Material Properties Across Length Scales
,”
Osteoarthritis Cartilage
,
18
(
8
), pp.
1051
1057
.
19.
Hertz
,
H.
,
1881
, “
On the Contact of Elastic Solids
,”
J. Reine Angew. Math.
,
92
, pp.
156
171
.
20.
Agbezuge
,
L. K.
, and
Deresiewicz
,
H.
,
1974
, “
Indentation of a Consolidating Half-Space
,”
Isr. J. Technol.
,
12
(
5–6
), pp.
322
338
.
21.
Oyen
,
M. L.
,
2008
, “
Poroelastic Nanoindentation Responses of Hydrated Bone
,”
J. Mater. Res.
,
23
(
5
), pp.
1307
1314
.
22.
Ling
,
F. F.
,
1974
, “
A New Model of Articular Cartilage in Human Joints
,”
ASME J. Lubr. Technol.
,
96
(
3
), pp.
449
454
.
23.
Soltz
,
M. A.
, and
Ateshian
,
G. A.
,
2000
, “
A Conewise Linear Elasticity Mixture Model for the Analysis of Tension-Compression Nonlinearity in Articular Cartilage
,”
ASME J. Biomech. Eng.
,
122
(
6
), pp.
576
586
.
24.
Huang
,
C. Y.
,
Mow
,
V. C.
, and
Ateshian
,
G. A.
,
2001
, “
The Role of Flow-Independent Viscoelasticity in the Biphasic Tensile and Compressive Responses of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
123
(
5
), pp.
410
417
.
25.
Setton
,
L. A.
,
Mow
,
V. C.
,
Muller
,
F. J.
,
Pita
,
J. C.
, and
Howell
,
D. S.
,
1994
, “
Mechanical-Properties of Canine Articular-Cartilage are Significantly Altered Following Transection of the Anterior Cruciate Ligament
,”
J. Orthop. Res.
,
12
(
4
), pp.
451
463
.
26.
Moore
,
A. C.
,
Zimmerman
,
B. K.
,
Chen
,
X.
,
Lu
,
X. L.
, and
Burris
,
D. L.
,
2015
, “
Experimental Characterization of Biphasic Materials Using Rate-Controlled Hertzian Indentation
,”
Tribol. Int.
,
89
, pp.
2
8
.
27.
Maas
,
S. A.
,
Ellis
,
B. J.
,
Ateshian
,
G. A.
, and
Weiss
,
J. A.
,
2012
, “
FEBio: Finite Elements for Biomechanics
,”
ASME J. Biomech. Eng.
,
134
(
1
), p.
011005
.
28.
Williamson
,
A. K.
,
Chen
,
A. C.
, and
Sah
,
R. L.
,
2001
, “
Compressive Properties and Function-Composition Relationships of Developing Bovine Articular Cartilage
,”
J. Orthop. Res.
,
19
(
6
), pp.
1113
1121
.
29.
Moore
,
A. C.
, and
Burris
,
D. L.
,
2014
, “
An Analytical Model to Predict Interstitial Lubrication of Cartilage in Migrating Contact Areas
,”
J. Biomech.
,
47
(
1
), pp.
148
153
.
30.
Stevanovic
,
M.
,
Yovanovich
,
M. M.
, and
Culham
,
J. R.
,
2001
, “
Modeling Contact Between Rigid Sphere and Elastic Layer Bonded to Rigid Substrate
,”
IEEE Trans. Compon. Packag. Technol.
,
24
(
2
), pp.
207
212
.
31.
Lai
,
W. M.
, and
Mow
,
V. C.
,
1980
, “
Drag-Induced Compression of Articular-Cartilage During a Permeation Experiment
,”
Biorheology
,
17
(
1–2
), pp.
111
123
.
32.
Holmes
,
M. H.
, and
Mow
,
V. C.
,
1990
, “
The Nonlinear Characteristics of Soft Gels and Hydrated Connective Tissues in Ultrafiltration
,”
J. Biomech.
,
23
(
11
), pp.
1145
1156
.
33.
ISO
,
1993
, “
Guide to the Expression of Uncertainty in Measurement (Corrected and Reprinted 1995)
,” International Organization for Standardization, Geneva, Switzerland.
34.
Maas
,
S.
,
Rawlins
,
D.
,
Weiss
,
J.
, and
Ateshian
,
G.
,
2011
, “
FEBio Theory Manual
,” Musculoskeletal Research Laboratories, University of Utah, Salt Lake City, UT.
35.
Ateshian
,
G. A.
,
Rajan
,
V.
,
Chahine
,
N. O.
,
Canal
,
C. E.
, and
Hung
,
C. T.
,
2009
, “
Modeling the Matrix of Articular Cartilage Using a Continuous Fiber Angular Distribution Predicts Many Observed Phenomena
,”
ASME J. Biomech. Eng.
,
131
(
6
), p.
061003
.
36.
Chen
,
A. C.
,
Bae
,
W. C.
,
Schinagl
,
R. M.
, and
Sah
,
R. L.
,
2001
, “
Depth- and Strain-Dependent Mechanical and Electromechanical Properties of Full-Thickness Bovine Articular Cartilage in Confined Compression
,”
J. Biomech.
,
34
(
1
), pp.
1
12
.
37.
Mow
,
V.
, and
Guo
,
X. E.
,
2002
, “
Mechano-Electrochemical Properties of Articular Cartilage: Their Inhomogeneities and Anisotropies
,”
Annu. Rev. Biomed. Eng.
,
4
(
1
), pp.
175
209
.
38.
Moore
,
A. C.
, and
Burris
,
D. L.
,
2015
, “
Tribological and Material Properties for Cartilage of and Throughout the Bovine Stifle: Support for the Altered Joint Kinematics Hypothesis of Osteoarthritis
,”
Osteoarthritis Cartilage
,
23
(
1
), pp.
161
169
.
39.
Eckstein
,
F.
,
Tieschky
,
M.
,
Faber
,
S.
,
Englmeier
,
K. H.
, and
Reiser
,
M.
,
1999
, “
Functional Analysis of Articular Cartilage Deformation, Recovery, and Fluid Flow Following Dynamic Exercise In Vivo
,”
Anat. Embryol.
,
200
(
4
), pp.
419
424
.
40.
Brand
,
R. A.
,
2005
, “
Joint Contact Stress: A Reasonable Surrogate for Biological Processes?
,”
Iowa Orthop. J.
,
25
, pp.
82
94
.
41.
Akizuki
,
S.
,
Mow
,
V. C.
,
Muller
,
F.
,
Pita
,
J. C.
,
Howell
,
D. S.
, and
Manicourt
,
D. H.
,
1986
, “
Tensile Properties of Human Knee-Joint Cartilage. 1. Influence of Ionic Conditions, Weight Bearing, and Fibrillation on the Tensile Modulus
,”
J. Orthop. Res.
,
4
(
4
), pp.
379
392
.
42.
Basalo
,
I. M.
,
Nauck
,
R. L.
,
Kelly
,
T. A.
,
Nicoll
,
S. B.
,
Chen
,
F. H.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
,
2004
, “
Cartilage Interstitial Fluid Load Support in Unconfined Compression Following Enzymatic Digestion
,”
ASME J. Biomech. Eng.
,
126
(
6
), pp.
779
786
.
43.
Elliott
,
D. M.
,
Guilak
,
F.
,
Vail
,
T. P.
,
Wang
,
J. Y.
, and
Setton
,
L. A.
,
1999
, “
Tensile Properties of Articular Cartilage are Altered by Meniscectomy in a Canine Model of Osteoarthritis
,”
J. Orthop. Res.
,
17
(
4
), pp.
503
508
.
44.
Huang
,
C. Y.
,
Soltz
,
M. A.
,
Kopacz
,
M.
,
Mow
,
V. C.
, and
Ateshian
,
G. A.
,
2003
, “
Experimental Verification of the Roles of Intrinsic Matrix Viscoelasticity and Tension-Compression Nonlinearity in the Biphasic Response of Cartilage
,”
ASME J. Biomech. Eng.
,
125
(
1
), pp.
84
93
.
45.
Jurvelin
,
J. S.
,
Buschmann
,
M. D.
, and
Hunziker
,
E. B.
,
1997
, “
Optical and Mechanical Determination of Poisson's Ratio of Adult Bovine Humeral Articular Cartilage
,”
J. Biomech.
,
30
(
3
), pp.
235
241
.
46.
Wang
,
C. C. B.
,
Chahine
,
N. O.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
,
2003
, “
Optical Determination of Anisotropic Material Properties of Bovine Articular Cartilage in Compression
,”
J. Biomech.
,
36
(
3
), pp.
339
353
.
You do not currently have access to this content.