Lab-scale electromagnetic launcher (EML) tests for the baseline case of an aluminum armature spanning a pair of copper rails reproduced excessive aluminum melt wear depth leading to loss of conductive contact and resultant electrical transition before completion of launch. A simple thermal model partitioning interfacial Joule heat input between conduction into the rails and melting of the armature provided compact expressions describing armature wear behavior. A quantity from this expression, termed the armature melt resistance (AMR), predicts a decrease of armature wear and the likelihood for resultant electrical transition with increasing rail thermal conductivity and heat capacity, as well as armature heat capacity, latent heat, and melt point. With this AMR metric to guide materials' selection, in subsequent tests, a slight increase in wear indeed occurred upon substitution of stainless steel rails, with more dramatic order of magnitude decreases in wear and avoidance of electrical transition instead realized upon substitution of solid molybdenum armatures.

References

References
1.
Fair
,
H. D.
,
1982
, “
Electromagnetic Propulsion: A New Initiative
,”
IEEE Trans. Magn.
,
18
(
1
), pp.
4
6
.
2.
McFarland
,
J.
, and
McNab
,
I. R.
,
2003
, “
A Long-Range Naval Railgun
,”
IEEE Trans. Magn.
,
39
(
1
), pp.
289
294
.
3.
Stefani
,
F.
, and
Parker
,
J. V.
,
1999
, “
Experiments to Measure Wear in Aluminum Armatures
,”
IEEE Trans. Magn.
,
35
(
1
), pp.
100
105
.
4.
Barber
,
J. P.
,
Bauer
,
D. P.
,
Jamison
,
K.
,
Parker
,
J. V.
,
Stefani
,
F.
, and
Zielinski
,
A.
,
2003
, “
A Survey of Armature Transition Mechanisms
,”
IEEE Trans. Magn.
,
39
(
1
), pp.
47
51
.
5.
Cooper
,
K. P.
,
Jones
,
N. J.
, and
Meger
,
R. A.
,
2007
, “
Analysis of Railgun Barrel Material
,”
IEEE Trans. Magn.
,
43
(
1
), pp.
120
125
.
6.
Meger
,
R. A.
,
Cooper
,
K.
,
Jones
,
H.
,
Neri
,
S.
,
Singer
,
I. L.
,
Sprague
,
J.
, and
Wahl
,
K. J.
,
2005
, “
Analysis of Rail Surfaces From a Multishot Railgun
,”
IEEE Trans. Magn.
,
41
(
1
), pp.
211
213
.
7.
Bansal
,
D. G.
, and
Streator
,
J. L.
,
2009
, “
Behavior of Copper-Aluminum Tribological Pair Under High Current Densities
,”
IEEE Trans. Magn.
,
45
(
1
), pp.
244
249
.
8.
Bair
,
S.
,
Cowan
,
R.
,
Kennedy
,
G.
,
Neu
,
R.
,
Siopsis
,
M.
,
Streator
,
J.
, and
Thadhani
,
N.
,
2012
, “
A Survey of Railgun Research at the Georgia Institute of Technology
,”
16th International Symposium on Electromagnetic Launch Technology
, Beijing, China, May 15–19, pp.
1
6
.
9.
Kennedy
,
F. E.
,
2001
, “
Frictional Heating and Contact Temperatures
,”
Modern Tribology Handbook
,
B.
Bhushan
, ed.,
CRC Press
,
Boca Raton
, FL, pp.
235
272
.
10.
Ling
,
F. F.
,
Lai
,
W. M.
, and
Lucca
,
D. A.
,
2002
,
Fundamentals of Surface Mechanics: With Applications
,
Springer-Verlag
,
New York
.
11.
Balic
,
E. E.
, and
Blanchet
,
T. A.
,
2007
, “
The Effect of Countersurface Thermal Properties on the Melt Wear of Aluminum
,”
Wear
,
263
(1–6), pp.
609
613
.
12.
Holm
,
R.
,
1967
,
Electric Contacts: Theory and Applications
,
4th ed.
,
Springer-Verlag
,
New York
.
13.
Stefani
,
F.
,
Crawford
,
M.
,
Melton
,
D.
, and
Watt
,
T.
,
2007
, “
Experiments With Armature Contact Claddings
,”
IEEE Trans. Magn.
,
43
(
1
), pp.
413
417
.
You do not currently have access to this content.