Rotating machinery is inherently susceptible to costly and dangerous faults. One such commonly encountered fault is undesirable dynamic contact between the rotor and stator (i.e., rotor–stator rub). The forces generated during rotor–stator rub are fundamentally tribological, as they are generated by contact and friction and result in wear. These forces are typically found by assuming linear elastic contact and dry Coulomb friction at the rotor–stator interface, where the normal force is a linear function of the interference. For the first time, this work incorporates viscoelasticity into the stator support and investigates its influence on the global dynamics of rotor–stator rub. The viscoelastic stator supports are modeled using fractional calculus, an approach which adeptly and robustly characterizes the viscoelasticity. Specifically, a fractional derivative order of one-half is employed to generate an analytic time-domain form of viscoelastic impedance. This approach directly assimilates viscoelasticity into the system dynamics, since the rotor equations of motion are integrated numerically in the time-domain. The coupled rotor–stator dynamic model incorporating viscoelastic supports is solved numerically to explore the influence of viscoelasticity. This model provides a framework for analysis of dynamic systems where viscoelasticity is included.

References

References
1.
Lee
,
A. S.
, and
Green
,
I.
,
1994
, “
Higher Harmonic Oscillations in a Non-Contacting FMR Mechanical Face Seal Test Rig
,”
ASME J. Vib. Acoust.
,
116
(
2
), pp.
161
167
.
2.
Bernardo
,
M.
,
Budd
,
C.
,
Champneys
,
A. R.
, and
Kowalczyk
,
P.
,
2008
,
Piecewise-Smooth Dynamical Systems: Theory and Applications
,
Springer Science and Business Media
, Springer-Verlag, London.
3.
Varney
,
P.
, and
Green
,
I.
,
2014
, “
Rotor/Stator Rubbing Contact in an Overhung Rotordynamic System
,”
STLE Annual Meeting
, Orlando, FL.
4.
Varney
,
P.
, and
Green
,
I.
,
2014
, “
Nonlinear Phenomena, Bifurcations, and Routes to Chaos in an Asymmetrically Supported Rotor-Stator Contact System
,”
J. Sound Vib.
,
336
, pp.
207
226
.
5.
Chu
,
F.
, and
Zhang
,
Z.
,
1997
, “
Bifurcation and Chaos in a Rub-Impact Jeffcott Rotor System
,”
J. Sound Vib.
,
210
(
1
), pp.
1
18
.
6.
Zhang
,
W. M.
, and
Meng
,
G.
,
2006
, “
Stability, Bifurcation and Chaos of a High-Speed Rub-Impact Rotor System in Mems
,”
Sens. Actuators
,
127
(
1
), pp.
163
178
.
7.
Groll
,
G. V.
, and
Ewins
,
D. J.
,
2002
, “
A Mechanism of Low Subharmonic Response in Rotor/Stator Contact Measurements and Simulation
,”
ASME J. Vib. Acoust.
,
124
(
3
), pp.
350
358
.
8.
Jacquet-Richardet
,
G.
,
Torkhani
,
M.
,
Cartraud
,
P.
,
Thouverez
,
F.
,
Baranger
,
T. N.
,
Herran
,
M.
,
Gibert
,
C.
,
Baguet
,
S.
,
Almeida
,
P.
, and
Peletan
,
L.
,
2013
, “
Rotor to Stator Contacts in Turbomachines Review and Application
,”
Mech. Syst. Signal Process.
,
40
(
2
), pp.
401
420
.
9.
Yu
,
J. J.
,
Goldman
,
P.
,
Bently
,
D. E.
, and
Muzynska
,
A.
,
2002
, “
Rotor/Seal Experimental and Analytical Study on Full Annular Rub
,”
ASME J. Eng. Gas Turbines Power
,
124
(
2
), pp.
340
350
.
10.
Childs
,
D. W.
, and
Bhattacharya
,
A.
,
2007
, “
Prediction of Dry-Friction Whirl and Whip Between a Rotor and a Stator
,”
ASME J. Vib. Acoust.
,
129
(
3
), pp.
355
362
.
11.
Yu
,
J.
,
2012
, “
On Occurrence of Reverse Full Annular Rub
,”
ASME J. Eng. Gas Turbines Power
,
134
(
1
), pp.
219
227
.
12.
Cao
,
J.
,
Ma
,
C.
,
Jiang
,
Z.
, and
Liu
,
S.
,
2011
, “
Nonlinear Dynamic Analysis of Fractional Order Rub-Impact Rotor System
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
3
), pp.
1443
1463
.
13.
Patel
,
T. H.
,
Zuo
,
M. J.
, and
Zhao
,
X.
,
2012
, “
Nonlinear Lateral-Torsional Coupled Motion of a Rotor Contacting a Viscoelastically Suspended Stator
,”
Nonlinear Dyn.
,
69
(1), pp.
325
339
.
14.
Dutt
,
J. K.
, and
Nakra
,
B. C.
,
1992
, “
Stability of Rotor Systems With Viscoelastic Supports
,”
J. Sound Vib.
,
153
(
1
), pp.
89
96
.
15.
Lee
,
Y. B.
,
Kim
,
T. H.
,
Lee
,
N. S.
, and
Choi
,
D. H.
,
2004
, “
Dynamic Characteristics of a Flexible Rotor System Supported by a Viscoelastic Foil Bearing (VEFB)
,”
Tribol. Int.
,
37
(
9
), pp.
679
687
.
16.
Shabaneh
,
N. H.
, and
Zu
,
J. W.
,
2000
, “
Dynamic Analysis of Rotor-Shaft Systems With Viscoelastically Supported Bearings
,”
Mech. Mach. Theory
,
35
(
9
), pp.
1313
1330
.
17.
Wilkes
,
J.
,
Moore
,
J.
,
Ransom
,
D.
, and
Vannini
,
G.
,
2014
, “
An Improved Catcher Bearing Model and an Explanation of the Forward Whirl/Whip Phenomenon Observed in Active Magnetic Bearing Transient Drop Experiments
,”
ASME J. Eng. Gas Turbines Power
,
136
(
4
), pp.
1
11
.
18.
Sun
,
G.
,
Palazzolo
,
A.
,
Provenza
,
A.
, and
Montague
,
G.
,
2004
, “
Detailed Ball Bearing Model for Magnetic Suspension Auxiliary Service
,”
J. Sound Vib.
,
269
(
3–5
), pp.
933
963
.
19.
Beatty
,
R. F.
,
1985
, “
Differentiating Rotor Response Due to Radial Rubbing
,”
J. Vib., Acoust., Stress, Reliab. Des.
,
107
(
2
), pp.
151
160
.
20.
Smyth
,
P. A.
,
Green
,
I.
,
Jackson
,
R. L.
, and
Hanson
,
R. R.
,
2014
, “
Biomimetic Model of Articular Cartilage Based on In Vitro Experiments
,”
J. Biomimetics, Biomater. Biomed. Eng.
,
21
, pp.
75
91
.
21.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
1979
, “
A Generalized Derivative Model for an Elastomer Damper
,”
Shock Vib. Bull.
,
49
(
2
), pp.
135
143
.
22.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
1983
, “
A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity
,”
J. Rheol. (1978-Present)
,
27
(
3
), pp.
201
210
.
23.
Rogers
,
L.
,
1983
, “
Operators and Fractional Derivatives for Viscoelastic Constitutive Equations
,”
J. Rheol.
,
27
(
4
), pp.
351
372
.
24.
Koeller
,
R.
,
1984
, “
Applications of Fractional Calculus to the Theory of Viscoelasticity
,”
ASME J. Appl. Mech.
,
51
(
2
), pp.
299
307
.
25.
Torvik
,
P. J.
, and
Bagley
,
R. L.
,
1984
, “
On the Appearance of the Fractional Derivative in the Behavior of Real Materials
,”
ASME J. Appl. Mech.
,
51
(
2
), pp.
294
298
.
26.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
1985
, “
Fractional Calculus in the Transient Analysis of Viscoelastically Damped Structures
,”
AIAA J.
,
23
(
6
), pp.
918
925
.
27.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
1986
, “
On the Fractional Calculus Model of Viscoelastic Behavior
,”
J. Rheol. (1978-Present)
,
30
(
1
), pp.
133
155
.
28.
Koeller
,
R. C.
,
1986
, “
Polynomial Operators, Stieltjes Convolution, and Fractional Calculus in Hereditary Mechanics
,”
Acta Mech.
,
58
(
3–4
), pp.
251
264
.
29.
Bagley
,
R. L.
,
1989
, “
Power Law and Fractional Calculus Model of Viscoelasticity
,”
AIAA J.
,
27
(
10
), pp.
1412
1417
.
30.
Erdelyi
,
A.
,
Magnus
,
W.
,
Oberhettinger
,
F.
, and
Tricomi
,
F.
, eds.,
1955
,
Higher Transcendental Functions
, Vol.
III
,
McGraw-Hill
,
New York
.
31.
Podlubny
,
I.
,
1998
,
Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Mathematics in Science and Engineering
,
Academic Press
, San Diego, CA.
32.
Szumski
,
R. G.
, and
Green
,
I.
,
1991
, “
Constitutive Laws in Time and Frequency Domains for Linear Viscoelastic Materials
,”
J. Acoust. Soc. Am.
,
90
(
40
), p.
2292
.
33.
Szumski
,
R. G.
,
1993
, “
A Finite Element Formulation for the Time Domain Vibration Analysis of an Elastic-Viscoelastic Structure
,”
Ph.D. thesis
, Georgia Institute of Technology, Atlanta, GA.
34.
Biesel
,
V.
,
1993
, “
Experimental Measurement of the Dynamic Properties of Viscoelastic Materials
,”
M.S. thesis
, Georgia Institute of Technology, Atlanta, GA.
35.
Smyth
,
P. A.
, and
Green
,
I.
,
2015
, “
A Fractional Calculus Model of Articular Cartilage Based on Experimental Stress-Relaxation
,”
Mech. Time-Depend. Mater.
,
19
(
2
), pp.
209
228
.
36.
Scholz
,
A.
,
2011
, “
Ein beitrag zur optimierung des schwingungsverhaltens komplexer rotorsysteme mit viskoelastischen dämpfungselementen
,” Ph.D. thesis, Technische Universitat Berlin, Berlin.
37.
Liebich
,
R.
,
Scholz
,
A.
, and
Wieschalla
,
M.
,
2012
, “
Rotors Supported by Elastomer-Ring-Dampers: Experimental and Numerical Investigations
,”
10th International Conference on Vibrations in Rotating Machinery
, London, pp.
443
453
.
38.
Pooseh
,
S.
,
Almeida
,
R.
, and
Torres
,
D. F. M.
,
2013
, “
Numerical Approximations of Fractional Derivatives With Applications
,”
Asian J. Control
,
15
(
3
), pp.
698
712
.
39.
Popprath
,
S.
, and
Ecker
,
H.
,
2007
, “
Nonlinear Dynamics of a Rotor Contacting an Elastically Suspended Stator
,”
J. Sound Vib.
,
308
(
3–5
), pp.
767
784
.
40.
Chu
,
F.
, and
Zhang
,
Z.
,
1997
, “
Periodic, Quasi-Periodic and Chaotic Vibrations of a Rub-Impact Rotor System Supported on Oil Film Bearings
,”
Int. J. Eng. Sci.
,
35
(
9
), pp.
963
973
.
41.
Goldman
,
P.
, and
Muszynska
,
A.
,
1994
, “
Dynamic Effects in Mechanical Structures With Gaps and Impacting: Order and Chaos
,”
ASME J. Vib. Acoust.
,
116
(
4
), pp.
541
547
.
42.
Chang-Jian
,
C. W.
, and
Chen
,
C. K.
,
2007
, “
Chaos and Bifurcation of a Flexible Rub-Impact Rotor Supported by Oil Film Bearings With Nonlinear Suspension
,”
Mech. Mach. Theory
,
42
(
3
), pp.
312
333
.
43.
Kim
,
Y. B.
, and
Noah
,
S. T.
,
1990
, “
Bifurcation Analysis for a Modified Jeffcott Rotor With Bearing Clearances
,”
Nonlinear Dyn.
,
1
(
3
), pp.
221
241
.
44.
Inayat-Hussain
,
J. I.
,
2010
, “
Bifurcations in the Response of a Jeffcott Rotor With Rotor-to-Stator Rub
,”
ASME
Paper No. ESDA2010-24453.
45.
Chavez
,
J. P.
, and
Wiercigroch
,
M.
,
2013
, “
Bifurcation Analysis of Periodic Orbits of a Non-Smooth Jeffcott Rotor Model
,”
Commun. Nonlinear Sci. Numer. Simul.
,
18
(
9
), pp.
2571
2580
.
46.
Abu-Mahfouz
,
I.
, and
Banerjee
,
A.
,
2013
, “
On the Investigation of Nonlinear Dynamics of a Rotor With Rub-Impact Using Numerical Analysis and Evolutionary Algorithms
,”
Proc. Comput. Sci.
,
20
, pp.
140
147
.
47.
Chang-Jian
,
C. W.
, and
Chen
,
C. K.
,
2009
, “
Chaos of Rub-Impact Rotor Supported by Bearings With Nonlinear Suspension
,”
Tribol. Int.
,
42
(
3
), pp.
426
439
.
You do not currently have access to this content.