A series of ball–disk contact friction tests were carried out using a microtribometer to study the tribological characteristics of steel/steel rubbing pairs immersed in 47 different organic compounds as lubricant base oils. The structures and their friction data were included in a back-propagation neural network (BPNN) quantitative structure tribo-ability relationship (QSTR) model. Following leave-one-out (LOO) cross-validation, the BPNN model shows good predictability and accuracy for the friction parameter (R2 = 0.994, R2(LOO) = 0.849, and q2 = 0.935). Connectivity indices (CHI) show the large positive contribution to friction, which imply that friction performance has a strong correlation with molecular structure. The BPNN–QSTR models can flexibly and easily estimate the friction properties of lubricant base oils.

References

References
1.
Mang
,
T.
, and
Dresel
,
W.
,
2001
,
Lubricants and Lubrication
,
Wiley VCH
,
Weinheim, Germany
.
2.
Li
,
G.
,
2012
,
Lubricant Formulation and Production
,
Chemical Industry Press
,
Beijing
.
3.
Guan
,
Z.
, and
Zhong
,
G.
,
2012
,
Questions and Answers of Lubricant Application
,
China Petrochemical Press
,
Beijing
.
4.
Wang
,
X.
,
2011
,
Application and Production of Industrial Lubricants
,
China Petrochemical Press
,
Beijing
.
5.
Cramer
,
R. D.
III,
Patterson
,
D. E.
, and
Bunce
,
J. D.
,
1989
, “
Recent Advances in Comparative Molecular Field Analysis (CoMFA)
,”
Prog. Clin. Biol. Res.
,
291
, pp.
161
165
.
6.
Hansch
,
C.
, and
Steward
,
A. R.
,
1964
, “
The Use of Substituent Constants in the Analysis of the Structure-Activity Relationship in Penicillin Derivatives
,”
J. Med. Chem.
,
7
(
6
), pp.
691
694
.
7.
Hansch
,
C.
, and
Leo
,
A.
,
1995
,
Exploring QSAR
,
American Chemical Society
,
Washington, DC
.
8.
Mannhold
,
R.
,
Krogsgaard
,
L. P.
, and
Timmerman
,
H.
,
2008
,
QSAR: Hansch Analysis and Related Approaches
, Vol.
1
,
H.
Kubinyi
, ed.,
Wiley
, Hoboken, NJ.
9.
Gao
,
X.
,
Wang
,
Z.
,
Zhang
,
H.
,
Dai
,
K.
, and
Wang
,
T.
,
2015
, “
A Quantitative Structure Tribo-Ability Relationship Model for Ester Lubricant Base Oils
,”
ASME J. Tribol.
,
137
(
2
), p.
021801
.
10.
Dai
,
K.
, and
Gao
,
X.
,
2013
, “
Estimating Antiwear Properties of Lubricant Additives Using a Quantitative Structure Tribo-Ability Relationship Model With Back Propagation Neural Network
,”
Wear
,
306
(
1–2
), pp.
242
247
.
11.
Gao
,
X.
,
Wang
,
Z.
,
Zhang
,
H.
, and
Dai
,
K.
,
2015
, “
A Three Dimensional Quantitative Tribo-Ability Relationship Model
,”
ASME J. Tribol.
,
137
(
2
), p.
021802
.
12.
Baskin
,
I. I.
,
Ait
,
A. O.
,
Halberstam
,
N. M.
,
Palyulin
,
V. A.
, and
Zefirov
,
N. S.
,
2002
, “
An Approach to the Interpretation of Backpropagation Neural Network Models in QSAR Studies
,”
SAR QSAR Environ. Res.
,
13
(
1
), pp.
35
41
.
13.
Baskin
,
I. I.
,
Palyulin
,
V. A.
, and
Zefirov
,
N. S.
,
2009
, “
Neural Networks in Building QSAR Models
,”
Artificial Neural Networks
,
Humana Press
, NJ, pp.
133
154
.
14.
Basheer
,
I. A.
, and
Hajmeer
,
M.
,
2000
, “
Artificial Neural Networks: Fundamentals, Computing, Design, and Application
,”
J. Microbiol. Methods
,
43
(
1
), pp.
3
31
.
15.
Volodymyr
,
P.
,
Vasyl
,
K.
,
Michael
,
S.
,
Iryna
,
K.
,
Larysa
,
M.
,
Vadim
,
R.
,
Sergey
,
M.
, and
Valery
,
K.
,
2014
, “
Design and Synthesis of New Potent Inhibitors of Farnesyl Pyrophosphate Synthase
,”
Curr. Drug Discovery Technol.
,
11
(
2
), pp.
133
144
.
16.
Tripos International
,
2009
,
SYBYL-X 1.1
,
Tripos International
,
St. Louis, MO
.
17.
Katritzky
,
A. R.
, and
Gordeeva
,
E. V.
,
1993
, “
Traditional Topological Indexes versus Electronic, Geometrical, and Combined Molecular Descriptors in QSAR/QSPR Research
,”
J. Chem. Inf. Comput. Sci.
,
33
(
6
), pp.
835
857
.
You do not currently have access to this content.