This paper presents direct simulation Monte Carlo (DSMC) numerical investigation of the dynamic behavior of a gas film in a microbeam. The microbeam undergoes large amplitude harmonic motion between its equilibrium position and the fixed substrate underneath. Unlike previous work in literature, the beam undergoes large displacements throughout the film gap thickness and the behavior of the gas film along with its impact on the moving microstructure (force exerted by gas on the beam's front and back faces) is discussed. Since the gas film thickness is of the order of few microns (i.e., 0.01 < Kn < 1), the rarefied gas exists in the noncontinuum regime and, as such, the DSMC method is used to simulate the fluid behavior. The impact of the squeeze film on the beam is investigated over a range of frequencies and velocity amplitudes, corresponding to ranges of dimensionless flow parameters such as the Reynolds, Strouhal, and Mach numbers on the gas film behavior. Moreover, the behavior of compressibility pressure waves as a function of these dimensionless groups is discussed for different simulation case studies.

References

References
1.
Muller
,
P.
,
Rolland
,
N.
,
Ziaei
,
A.
,
Polizzi
,
J.
,
Collard
,
D.
, and
Buchaillot
,
L.
,
2005
, “
Bulk Microswitch for Power RF Applications
,” 18th
IEEE
International Conference on Micro Electro Mechanical Systems
, MEMS, Jan. 30–Feb. 3, pp.
171
174
.
2.
Pryputniewicz
,
R.
,
Xiangguang
,
T.
, and
Przekwas
,
A.
,
2004
, “
Modeling and Measurements of MEMS Gyroscopes
,”
IEEE Position Location and Navigation Symposium
, pp.
111
119
.
3.
Juan
,
W.
, and
Pang
,
S.
,
1998
, “
High-Aspect-Ratio Si Vertical Micromirror Arrays for Optical Switching
,”
J. Microelectromechan. Syst.
,
7
(
2
), pp.
207
213
.
4.
Beliveau
,
A.
,
Spencer
,
G.
,
Thomas
,
K.
, and
Roberson
,
S.
,
1999
, “
Evaluation of MEMS Capacitive Accelerometers
,”
IEEE Des. Test Comput.
,
16
(
4
), pp.
48
56
.
5.
Yasseen
,
A.
,
Wu
,
C.
,
Zorman
,
C.
, and
Mehregany
,
M.
,
2000
, “
Fabrication and Testing of Surface Micromachined Polycrystalline SIC Micromotors
,”
IEEE Electron Device Lett.
,
21
(
4
), pp.
164
166
.
6.
Mehra
,
A.
,
Zhang
,
X.
,
Ayn
,
A.
,
Waitz
,
I.
,
Schmidt
,
M.
, and
Spadaccini
,
C.
,
2000
, “
A Six-Wafer Combustion System for a Silicon Micro Gas Turbine Engine
,”
J. Microelectromech. Syst.
,
9
(
4
), pp.
517
527
.
7.
Blech
,
J.
,
1983
, “
On Isothermal Squeeze Films
,”
J. Lubr. Technol.
,
105
(
4
), pp.
615
620
.
8.
Andrews
,
M.
,
Harm
,
I.
, and
Turner
,
G.
,
1993
, “
A Comparison of Squeeze-Film Theory With Measurements on a Microstructure
,”
Sens. Actuators A
,
36
(
1
), pp.
79
87
.
9.
Zook
,
J.
,
Bums
,
D.
,
Guckel
,
H.
,
Snlegowski
,
J.
,
Engelstad
,
R.
, and
Feng
,
Z.
,
1992
, “
Characteristics of Polysilicon Resonant Microbeams
,”
Sens. Actuators A
,
35
(
1
), pp.
51
59
.
10.
Guo
,
X.
, and
Alexeenko
,
A.
,
2009
, “
Compact Model of Squeeze-Film Damping Based on Rarefied Flow Simulations
,”
J. Micromech. Microeng.
,
19
(
4
), p.
045026
.
11.
Bao
,
M.
,
Yang
,
H.
,
Yin
,
H.
, and
Sun
,
Y.
,
2002
, “
Energy Transfer Model for Squeeze-Film Air Damping in Low Vacuum
,”
J. Micromech. Microeng.
,
12
(
3
), pp.
341
346
.
12.
Christian
,
R.
,
1966
, “
The Theory of Oscillating-Vane Vacuum Gauges
,”
Vacuum
,
16
(
4
), pp.
175
178
.
13.
Newell
,
W.
,
1968
, “
Miniaturization of Tuning Forks
,”
Science
,
161
(
3848
), pp.
1320
1326
.
14.
Hutcherson
,
S.
, and
Ye
,
W.
,
2004
, “
On the Squeeze-Film Damping of Micro-Resonators in the Free-Molecule Regime
,”
J. Micromech. Microeng.
,
14
(
12
), pp.
1726
1733
.
15.
Li
,
P.
, and
Fang
,
Y.
,
2010
, “
A Molecular Dynamics Simulation Approach for the Squeeze-Film Damping of MEMS Devices in the Free Molecular Regime
,”
J. Micromech. Microeng.
,
20
(
3
), p.
035005
.
16.
Bao
,
M.
,
Sun
,
Y.
,
Zhou
,
J.
, and
Huang
,
Y.
,
2006
, “
Squeeze-Film Air Damping of a Torsion Mirror at a Finite Tilting Angle
,”
J. Micromech. Microeng.
,
16
(
11
), pp.
2330
2335
.
17.
Langlois
,
W. E.
,
1962
, “
Isothermal Squeeze Films
,”
Q. Appl. Math.
,
20
, pp.
131
150
.
18.
Starr
,
J. B.
,
1990
, “
Squeeze-Film Damping in Solid-State Accelerometers
,” Technical Digest
IEEE
Solid State Sensor and Actuator Workshop
, Hilton Head Island, SC, June 4–7, pp.
44
47
.
19.
Veijola
,
T.
,
Tinttunen
,
T.
,
Nieminen
,
H.
,
Ermolov
,
V.
, and
Ryhnen
,
T.
,
2002
, “
Gas Damping Model for a RF MEM Switch and Its Dynamic Characteristics
,”
International Microwave Symposium
(
IMS
), Seattle, WA, June 2–7, pp.
1213
1216
.
20.
Veijola
,
T.
,
2004
, “
Compact Models for Squeezed-Film Dampers With Inertial and Rarefied Gas Effects
,”
J. Micromech. Microeng.
,
14
(
7
), pp.
1109
1118
.
21.
Gallis
,
M.
, and
Torczynski
,
J.
,
2004
, “
An Improved Reynolds-Equation Model for Gas Damping of Microbeam Motion
,”
J. Microelectromech. Syst.
,
13
(
4
), pp.
653
659
.
22.
Lee
,
J.
,
Tung
,
R.
,
Raman
,
A.
,
Sumali
,
H.
, and
Sullivan
,
J.
,
2009
, “
Squeeze-Film Damping of Flexible Microcantilevers at Low Ambient Pressures: Theory and Experiment
,”
J. Micromech. Microeng.
,
19
(
10
), p.
105029
.
23.
Sumali
,
H.
,
2007
, “
Squeeze-Film Damping in the Free Molecular Regime: Model Validation and Measurement on a MEMS
,”
J. Micromech. Microeng.
,
17
(
11
), pp.
2231
2240
.
24.
Mol
,
L.
,
Rocha
,
L.
,
Cretu
,
E.
, and
Wolffenbuttel
,
R.
,
2009
, “
Squeezed Film Damping Measurements on a Parallel-Plate MEMS in the Free Molecule Regime
,”
J. Micromech. Microeng.
,
19
, p.
074021
.
25.
Diab
,
N.
, and
Lakkis
,
I.
,
2014
, “
Modeling Squeezed Films in the Vicinity of High Inertia Oscillating Micro-Structures
,”
ASME J. Tribol.
,
136
(
2
), p.
021705
.
26.
Diab
,
N.
, and
Lakkis
,
I.
,
2012
, “
DSMC Simulations of Squeeze Film Between a Micro Beam Undergoing Large Amplitude Oscillations and a Substrate
,”
ASME
Paper No. ICNMM2012-73138.
27.
Bird
,
G. A.
,
1994
,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
,
Clarendon
,
Oxford, UK
.
28.
Karniadakis
,
G.
,
Beskok
,
A.
, and
Aluru
,
N.
,
2005
,
Microflows and Nanoflows
,
Springer-Verlag
,
New York
.
29.
Shen
,
C.
,
2005
,
Rarefied Gas Dynamics
,
Springer
,
Berlin
.
30.
Veijola
,
T.
,
Kuisma
,
H.
,
Lahdenpera
,
J.
, and
Ryhanen
,
T.
,
1995
, “
Equivalent-Circuit Model of the Squeezed Gas Film in a Silicon Accelerometer
,”
Sens. Actuators A
,
48
(
3
), pp.
239
248
.
31.
Batchelor
,
G.
,
2000
,
An Introduction to Fluid Dynamics
,
Cambridge University Press
,
Cambridge, UK
.
You do not currently have access to this content.