As for the micro gas bearing operating at a high temperature and speed, one wedge-shaped microchannel is established, and the hydrodynamic properties of the wedge-shaped gas film are comprehensively investigated. The Reynolds equation, modified Reynolds equation, energy equation, and Navier–Stokes equations are employed to describe and analyze the hydrodynamics of the gas film. Furthermore, the comparisons among the hydrodynamic properties predicted by various models were performed for the different wedge factors and the different wall temperatures. The results show that coupling the simplified energy equation with the Reynolds or modified Reynolds equations has an obvious effect on the change of the friction force acting on the horizontal plate and the load capacity of the gas film at the higher wedge factor and the lower wall temperature. The velocity slip weakens the squeeze of the gas film and strengths the gas backflow. A larger wedge factor or a higher wall temperature leads to a higher gas film temperature and thus enhances the rarefaction effect. As the wall temperature is elevated, the load capacity obtained by the Reynolds equation increases, while the results by the Navier–Stokes equations coupled with the full energy equation rapidly decrease. Additionally, the vertical flow across the gas film in the Navier–Stokes equations weakens the squeeze between the gas film and the tilt plate and the gas backflow.

References

1.
Epstein
,
A. H.
,
Senturia
,
S. D.
,
Al-Midani
,
O.
,
Anathasuresh
,
G.
,
Ayon
,
A.
,
Breuer
,
K.
,
Chen
,
K.-S.
,
Ehrich
,
F. E.
,
Esteve
,
E.
,
Frechette
,
L.
,
Gauba
,
G.
,
Ghodssi
,
R.
,
Groshenry
,
C.
,
Jacobson
,
S.
,
Kerrebrock
,
J. L.
,
Lang
,
J. H.
,
Lin
,
C.-C.
,
London
,
A.
,
Lopata
,
J.
,
Mehra
,
A.
,
Mur Miranda
,
J. O.
,
Nagle
,
S.
,
Orr
,
D. J.
,
Piekos
,
E.
,
Schmidt
,
M. A.
,
Shirley
,
G.
,
Spearing
,
S. M.
,
Tan
,
C. S.
,
Tzeng
,
Y.-S.
, and
Waitz
,
I. A.
,
1997
, “
Micro-Heat Engines, Gas Turbines, and Rocket Engines: The MIT Microengine Project
,”
AIAA
Paper No. 97-1773.
2.
Epstein
,
A. H.
,
2004
, “
Millimeter-Scale, Micro-Electro-Mechanical Systems Engines Gas Turbine Engines
,”
ASME J. Eng. Gas Turbines Power
,
126
(
2
), pp.
205
226
.
3.
Burgdorfer
,
A.
,
1959
, “
The Influence of the Molecular Mean Free Path on the Performance of Hydrodynamic Gas Lubricated Bearings
,”
ASME J. Basic Eng.
,
81
(
1
), pp.
94
100
.
4.
Hsia
,
Y. T.
, and
Domoto
,
G. A.
,
1983
, “
An Experimental Investigation of Molecular Rarefaction Effects in Gas-Lubricated Bearings at Ultra-Low Clearances
,”
ASME J. Tribol.
,
105
(
1
), pp.
120
130
.
5.
Fukui
,
S.
, and
Kaneko
,
R.
,
1988
, “
Analysis of Ultra-Thin Gas Film Lubrication Based on the Linearized Boltzmann Equation. First Report—Derivation of a Generalized Lubrication Equation Including Thermal Creep Flow
,”
ASME J. Tribol.
,
110
(
2
), pp.
253
262
.
6.
Mitsuya
,
Y.
,
1993
, “
Modified Reynolds Equation for Ultra-Thin Film Gas Lubrication Using 1.5-Order Slip-Flow Model
,”
ASME J. Tribol.
,
115
(
2
), pp.
289
294
.
7.
Lee
,
N. S.
,
Choi
,
D. H.
,
Lee
,
Y. B.
,
Kim
,
T. H.
, and
Kim
,
C. H.
,
2002
, “
The Influence of the Slip Flow on Steady-State Load Capacity, Stiffness and Damping Coefficients of Elastically Supported Gas Foil Bearings
,”
Tribol. Trans.
,
45
(
4
), pp.
478
484
.
8.
Lee
,
Y. B.
,
Kwak
,
H. D.
,
Kim
,
C. H.
, and
Lee
,
N. S.
,
2005
, “
Numerical Prediction of Slip Flow Effect on Gas-Lubricated Journal Bearings for MEMS/MST-Based Micro-Rotating Machinery
,”
Tribol. Int.
,
38
(
1
), pp.
89
96
.
9.
Zhang
,
H. J.
,
Zhu
,
C. S.
, and
Tang
,
M.
,
2010
, “
Effects of Rarefaction on the Characteristics of Micro Gas Journal Bearings
,”
J. Zhejiang Univ., Sci. A
,
11
(
1
), pp.
43
49
.
10.
Zhang
,
W. M.
,
Zhou
,
J. B.
, and
Meng
,
G.
,
2011
, “
Performance and Stability Analysis of Gas-Lubricated Journal Bearings in MEMS
,”
Tribol. Int.
,
44
(
7–8
), pp.
887
897
.
11.
Zhang
,
X. Q.
,
Wang
,
X. L.
,
Liu
,
R.
, and
Wang
,
B.
,
2013
, “
Influence of Temperature on Nonlinear Dynamic Characteristics of Spiral Grooved Gas-Lubricated Thrust Bearing-Rotor Systems for Microengine
,”
Tribol. Int.
,
61
, pp.
138
143
.
12.
Bruckner
,
R. J.
, and
DellaCorte
,
C.
,
2005
, “
Analytic Modeling of the Hydrodynamic Thermal, and Structural Behavior of Foil Thrust Bearings
,”
2005 Annual Meeting and Exhibition, 60th Society of Tribologists and Lubrication Engineers
, Las Vegas, NV, Paper No. NASA/TM-2005-213811.
13.
Salehi
,
M.
,
Swanson
,
E.
, and
Heshat
,
H.
,
2001
, “
Thermal Features of Compliant Foil Bearings: Theory and Experiments
,”
ASME J. Tribol.
,
123
(
3
), pp.
566
571
.
14.
Lee
,
D.
, and
Kim
,
D.
,
2010
, “
Thermohydrodynamic Analyses of Bump Air Foil Bearings With Detailed Thermal Model of Foil Structures and Rotor
,”
ASME J. Tribol.
,
132
(
2
), p.
021704
.
15.
San Andrés
,
L.
, and
Kim
,
T. H.
,
2010
, “
Thermohydrodynamic Analysis of Bump Type Gas Foil Bearings: A Model Anchored to Test Data
,”
ASME J. Eng. Gas Turbines Power
,
132
(
4
), p.
042504
.
16.
Paulsen
,
B. T.
,
Morosi
,
S.
, and
Santos
,
I. F.
,
2011
, “
Static, Dynamic, and Thermal Properties of Compressible Fluid Film Journal Bearings
,”
Tribol. Trans.
,
54
(
2
), pp.
282
299
.
17.
Aksoy
,
S.
, and
Aksit
,
M. F.
,
2015
, “
A Fully Coupled 3D Thermo-Elastohydrodynamics Model for a Bump-Type Compliant Foil Journal Bearing
,”
Tribol. Int.
,
82
, pp.
110
122
.
18.
van Odyck
,
D. E. A.
, and
Venner
,
C. H.
,
2003
, “
Compressible Stokes Flow in Thin Films
,”
ASME J. Tribol.
,
125
(
1
), pp.
121
134
.
19.
Feldman
,
Y.
,
Kligerman
,
Y.
,
Etsion
,
I.
, and
Haber
,
S.
,
2006
, “
The Validity of the Reynolds Equation in Modeling Hydrostatic Effects in Gas Lubricated Textured Parallel Surfaces
,”
ASME J. Tribol.
,
128
(
2
), pp.
345
350
.
20.
Qiu
,
M. F.
,
Bailey
,
B. N.
,
Stoll
,
R.
, and
Raeymaekers
,
B.
,
2014
, “
The Accuracy of the Compressible Reynolds Equation for Predicting the Local Pressure in Gas-Lubricated Textured Parallel Slider Bearings
,”
Tribol. Int.
,
72
, pp.
83
89
.
21.
Kaye
,
G. W. C.
, and
Labye
,
T. H.
,
1956
,
Tables of Physical and Chemical Constants and Some Mathematical Functions
,
Longman
,
Hong Kong
.
22.
Rogers
,
G. F. C.
, and
Mayhew
,
Y. R.
,
1967
,
Engineering Thermodynamics: Work and Heat Transfer
,
Longman
,
Hong Kong
.
23.
Eckert
,
E. R. G.
, and
Drake
,
R. M.
, Jr.
,
1987
,
Analysis of Heat and Mass Transfer
,
Hemisphere
,
Carlsbad, CA
.
You do not currently have access to this content.