Experiments were performed on a ring-on-disk tribometer under lubricated conditions. Friction force was measured throughout the friction process. The parameter predictability was used to provide a quantitative description of the intrinsic randomness of the friction force. The parameter dynamic difference was used to detect the dynamic abrupt changes. The results show that, from the perspective of dynamics, the friction process can be divided into the abrupt changing process through which the intrinsic randomness is enhanced, the dynamic stable process through which the system maintains the strong intrinsic randomness, and the abrupt changing process through which the intrinsic randomness is weakened.

References

References
1.
Blau
,
P. J.
,
2001
, “
The Significance and Use of the Friction Coefficient
,”
Tribol. Int.
,
34
(
9
), pp.
585
591
.
2.
Blau
,
P. J.
,
1987
, “
A Model for Run-In and Other Transitions in Sliding Friction
,”
ASME J. Tribol.
,
109
(
3
), pp.
537
543
.
3.
Kim
,
K.
,
2010
, “
Analysis of Friction Coefficient Evolutions on Coated Systems Under Sliding Conditions
,”
Wear
,
269
(
9
), pp.
655
663
.
4.
Peng
,
Z.
, and
Kessissoglou
,
N.
,
2003
, “
An Integrated Approach to Fault Diagnosis of Machinery Using Wear Debris and Vibration Analysis
,”
Wear
,
255
(
7
), pp.
1221
1232
.
5.
Shakhvorostov
,
D.
,
Pöhlmann
,
K.
, and
Scherge
,
M.
,
2004
, “
An Energetic Approach to Friction, Wear and Temperature
,”
Wear
,
257
(
1
), pp.
124
130
.
6.
Nembhard
,
A. D.
,
Sinha
,
J. K.
,
Pinkerton
,
A. J.
, and
Elbhbah
,
K.
,
2014
, “
Condition Monitoring of Rotating Machines Using Vibration and Bearing Temperature Measurements
,”
Advances in Condition Monitoring of Machinery in Non-Stationary Operations
,
G.
Dalpiaz
,
R.
Rubini
,
G. D.
Elia
,
M.
Cocconcelli
,
F.
Chaari
,
R.
Zimroz
,
W.
Bartelmus
, and
M. Haddar
, eds.,
Springer
,
Berlin, Heidelberg
, pp.
159
169
.
7.
Yuan
,
C. Q.
,
Peng
,
Z.
,
Yan
,
X. P.
, and
Zhou
,
X. C.
,
2008
, “
Surface Roughness Evolutions in Sliding Wear Process
,”
Wear
,
265
(
3
), pp.
341
348
.
8.
Ebersbach
,
S.
,
Peng
,
Z.
, and
Kessissoglou
,
N. J.
,
2006
, “
The Investigation of the Condition and Faults of a Spur Gearbox Using Vibration and Wear Debris Analysis Techniques
,”
Wear
,
260
(
1
), pp.
16
24
.
9.
Yuan
,
C. Q.
,
Peng
,
Z.
,
Zhou
,
X. C.
, and
Yan
,
X. P.
,
2005
, “
The Characterization of Wear Transitions in Sliding Wear Process Contaminated With Silica and Iron Powder
,”
Tribol. Int.
,
38
(
2
), pp.
129
143
.
10.
Ji
,
C. C.
,
Zhu
,
H.
,
Jiang
,
W.
, and
Lu
,
B. B.
,
2010
, “
Running-In Test and Fractal Methodology for Worn Surface Topography Characterization
,”
Chin. J. Mech. Eng.
,
23
(
5
), pp.
600
605
.
11.
Syta
,
A.
,
Jonak
,
J.
,
Jedlinski
,
L.
, and
Litak
,
G.
,
2012
, “
Failure Diagnosis of a Gear Box by Recurrences
,”
ASME J. Vib. Acoust.
,
134
(
4
), p. 041006.
12.
Nosonovsky
,
M.
,
2010
, “
Entropy in Tribology: In Search of Applications
,”
Entropy
,
12
(
6
), pp.
1345
1390
.
13.
Fleurquin
,
P.
,
Fort
,
H.
,
Kornbluth
,
M.
,
Sandler
,
R.
,
Segal
,
M.
, and
Zypman
,
F.
,
2010
, “
Negentropy Generation and Fractality in Dry Friction of Polished Surfaces
,”
Entropy
,
12
(
3
), pp.
480
489
.
14.
Nosonovsky
,
M.
, and
Mortazavi
,
V.
,
2013
,
Friction-Induced Vibrations to Self-Organization: Mechanics and Non-Equilibrium Thermodynamics of Sliding Contact
,
CRC Press
, Boca Raton.
15.
Fox-Rabinovich
,
G. S.
,
Gershman
,
I. S.
,
Yamamoto
,
K.
,
Biksa
,
A.
,
Veldhuis
,
S. C.
, and
Beake
,
B. D.
,
2010
, “
Self-Organization During Friction in Complex Surface Engineered Tribosystems
,”
Entropy
,
12
(
2
), pp.
275
288
.
16.
Li
,
G.
,
Huang
,
Y.
, and
Lin
,
Y.
,
2013
, “
Stability Analysis of Running-In System Based on Nyquist Curve of Friction Vibration
,”
Tribol. Int.
,
60
, pp.
209
215
.
17.
Zhou
,
Y. K.
,
Zhu
,
H.
,
Zuo
,
X.
, and
Yang
,
J. H.
,
2014
, “
Chaotic Characteristics of Measured Temperatures During Sliding Friction
,”
Wear
,
317
(
1
), pp.
17
25
.
18.
Zhou
,
Y. K.
,
Zhu
,
H.
,
Zuo
,
X.
,
Li
,
Y.
, and
Chen
,
N. X.
,
2015
, “
The Nonlinear Nature of Friction Coefficient in Lubricated Sliding Friction
,”
Tribol. Int.
,
88
, pp.
8
16
.
19.
Zhu
,
H.
,
Ge
,
S. R.
,
Cao
,
X.
, and
Tang
,
W.
,
2007
, “
The Changes of Fractal Dimensions of Frictional Signals in the Running-In Wear Process
,”
Wear
,
263
(
7
), pp.
1502
1507
.
20.
Sun
,
D.
,
Li
,
G. B.
,
Wei
,
H. J.
, and
Liao
,
H. F.
,
2015
, “
Experimental Study on the Chaotic Attractor Evolvement of the Friction Vibration in a Running-In Process
,”
Tribol. Int.
,
88
, pp.
290
297
.
21.
Li
,
Y.
, and
Feng
,
Z. C.
,
2004
, “
Bifurcation and Chaos in Friction-Induced Vibration
,”
Commun. Nonlinear Sci.
,
9
(
6
), pp.
633
647
.
22.
Morrison
,
F.
,
2012
,
The Art of Modeling Dynamic Systems: Forecasting for Chaos, Randomness and Determinism
,
Wiley
,
New York
.
23.
Manuca
,
R.
, and
Savit
,
R.
,
1996
, “
Stationarity and Nonstationarity in Time Series Analysis
,”
Physica D
, 99(2–3), pp.
134
161
.
24.
Takens
,
F.
,
1981
,
Detecting Strange Attractors in Turbulence
,
Springer-Verlag
,
Berlin
.
25.
Ding
,
M. Z.
,
Grebogi
,
C.
,
Ott
,
E.
,
Sauer
,
T.
, and
Yorke
,
J. A.
,
1993
, “
Estimating Correlation Dimension From a Chaotic Time Series: When Does Plateau Onset Occur
,”
Physica D
,
69
(
3–4
), pp.
404
424
.
26.
Cao
,
L.
,
1997
, “
Practical Method for Determining the Minimum Embedding Dimension of a Scalar Time Series
,”
Physica D
,
110
(
1
), pp.
43
50
.
27.
Michael
,
S.
,
2005
,
Applied Nonlinear Time Series Analysis: Applications in Physics, Physiology and Finance
,
World Scientific
,
Singapore
.
28.
Kantz
,
H.
,
1994
, “
Quantifying the Closeness of Fractal Measures
,”
Phys. Rev. E
,
49
(
6
), pp.
5091
5097
.
29.
Stewart
,
I.
,
2000
, “
Mathematics: The Lorenz Attractor Exists
,”
Nature
,
406
(
6799
), pp.
948
949
.
30.
Ueta
,
T.
, and
Chen
,
G.
,
2000
, “
Bifurcation Analysis of Chen's Equation
,”
Int. J. Bifurcation Chaos
,
10
(
8
), pp.
1917
1931
.
31.
Maris
,
D. T.
, and
Goussis
,
D. A.
,
2015
, “
The Hidden Dynamics of the Rossler Attractor
,”
Physica D
,
295–296
, pp.
66
90
.
You do not currently have access to this content.