Traditionally, iterative schemes have been used to predict evolving material profiles under abrasive wear. In this work, more efficient continuous formulations are presented for predicting the wear of tribological systems. Following previous work, the formulation is based on a two parameter elastic Pasternak foundation model. It is considered as a simplified framework to analyze the wear of multimaterial surfaces. It is shown that the evolving wear profile is also the solution of a parabolic partial differential equation (PDE). The wearing profile is proven to converge to a steady-state that propagates with constant wear rate. A relationship between this velocity and the inverse rule of mixtures or harmonic mean for composites is derived. For cases where only the final steady-state profile is of interest, it is shown that the steady-state profile can be accurately and directly determined by solving a simple elliptic differential system—thus avoiding iterative schemes altogether. Stability analysis is performed to identify conditions under which an iterative scheme can provide accurate predictions and several comparisons between iterative and the proposed formulation are made. Prospects of the new continuous wear formulation and steady-state characterization are discussed for advanced optimization, design, manufacturing, and control applications.

References

1.
Archard
,
J. F.
, and
Hirst
,
W.
,
1956
, “
The Wear of Metals Under Unlubricated Conditions
,”
Proc. R. Soc. London, Ser. A.
,
236
(
1206
), pp.
397
410
.
2.
Archard
,
J. F.
,
1953
, “
Contact and Rubbing of Flat Surfaces
,”
J. Appl. Phys.
,
24
(
8
), pp.
981
988
.
3.
Hatchett
,
C.
,
1803
, “
Experiments and Observations on the Various Alloys, on the Specific Gravity, and on the Comparative Wear of Gold
,”
Philos. Trans. R. Soc. London
,
93
, pp.
43
194
.
4.
Põdra
,
P.
, and
Andersson
,
S.
,
1997
, “
Wear Simulation With the Winkler Surface Model
,”
Wear
,
207
(
1
), pp.
79
85
.
5.
Põdra
,
P.
, and
Andersson
,
S.
,
1999
, “
Finite Element Analysis Wear Simulation of a Conical Spinning Contact Considering Surface Topography
,”
Wear
,
224
(
1
), pp.
13
21
.
6.
Podra
,
P.
, and
Andersson
,
S.
,
1999
, “
Simulating Sliding Wear With Finite Element Method
,”
Tribol. Int.
,
32
(
2
), pp.
71
81
.
7.
Kim
,
N. H.
,
Won
,
D.
,
Burris
,
D.
,
Holtkamp
,
B.
,
Gessel
,
G. R.
,
Swanson
,
P.
, and
Sawyer
,
W. G.
,
2005
, “
Finite Element Analysis and Experiments of Metal/Metal Wear in Oscillatory Contacts
,”
Wear
,
258
(
11
), pp.
1787
1793
.
8.
Mukras
,
S.
,
Kim
,
N. H.
,
Mauntler
,
N. A.
,
Schmitz
,
T. L.
, and
Sawyer
,
W. G.
,
2010
, “
Analysis of Planar Multibody Systems With Revolute Joint Wear
,”
Wear
,
268
(
5
), pp.
643
652
.
9.
Mukras
,
S.
,
Kim
,
N. H.
,
Sawyer
,
W. G.
,
Jackson
,
D. B.
, and
Bergquist
,
L. W.
,
2009
, “
Numerical Integration Schemes and Parallel Computation for Wear Prediction Using Finite Element Method
,”
Wear
,
266
(
7
), pp.
822
831
.
10.
Lengiewicz
,
J.
, and
Stupkiewicz
,
S.
,
2013
, “
Efficient Model of Evolution of Wear in Quasi-Steady-State Sliding Contacts
,”
Wear
,
303
(
1
), pp.
611
621
.
11.
Fregly
,
B. J.
,
Sawyer
,
W. G.
,
Harman
,
M. K.
, and
Banks
,
S. A.
,
2005
, “
Computational Wear Prediction of a Total Knee Replacement From In Vivo Kinematics
,”
J. Biomech.
,
38
(
2
), pp.
305
314
.
12.
Chongyi
,
C.
,
Chengguo
,
W.
, and
Ying
,
J.
,
2010
, “
Study on Numerical Method to Predict Wheel/Rail Profile Evolution Due to Wear
,”
Wear
,
269
(
3
), pp.
167
173
.
13.
Telliskivi
,
T.
,
2004
, “
Simulation of Wear in a Rolling–Sliding Contact by a Semi-Winkler Model and the Archard's Wear Law
,”
Wear
,
256
(
7
), pp.
817
831
.
14.
Sawyer
,
W. G.
,
Argibay
,
N.
,
Burris
,
D. L.
, and
Krick
,
B. A.
,
2014
, “
Mechanistic Studies in Friction and Wear of Bulk Materials
,”
Annu. Rev. Mater. Res.
,
44
(
1
), pp.
395
427
.
15.
Sierra Suarez
,
J. A.
, and
Higgs
,
C. F.
, III
,
2015
, “
A Contact Mechanics Formulation for Predicting Dishing and Erosion CMP Defects in Integrated Circuits
,”
Tribol. Lett.
,
59
(
2
), pp.
1
12
.
16.
Ashby
,
M. F.
, and
Lim
,
S. C.
,
1990
, “
Wear-Mechanism Maps
,”
Scr. Metall. Mater.
,
24
(
5
), pp.
805
810
.
17.
Williams
,
J. A.
,
1999
, “
Wear Modeling: Analytical, Computational and Mapping: A Continuum Mechanics Approach
,”
Wear
,
225
, pp.
1
17
.
18.
Dickrell
,
D. J.
,
Dooner
,
D. B.
, and
Sawyer
,
W. G.
,
2003
, “
The Evolution of Geometry for a Wearing Circular Cam: Analytical and Computer Simulation With Comparison to Experiment
,”
ASME J. Tribol.
,
125
(
1
), pp.
187
192
.
19.
Blanchet
,
T. A.
,
1997
, “
The Interaction of Wear and Dynamics of a Simple Mechanism
,”
ASME J. Tribol.
,
119
(
3
), pp.
597
599
.
20.
Dickrell
,
D. J.
, and
Sawyer
,
W. G.
,
2004
, “
Evolution of Wear in a Two-Dimensional Bushing
,”
Tribol. Trans.
,
47
(
2
), pp.
257
262
.
21.
Sawyer
,
W. G.
,
2001
, “
Wear Predictions for a Simple-Cam Including the Coupled Evolution of Wear and Load
,”
Lubr. Eng
,
57
(
9
), pp.
31
36
.
22.
Ling
,
F. F.
,
Lai
,
W. M.
, and
Lucca
,
D. A.
,
2012
,
Fundamentals of Surface Mechanics: With Applications
,
Springer Science & Business Media
,
New York
.
23.
Ling
,
F. F.
, and
Pu
,
S.
,
1964
, “
Probable Interface Temperatures of Solids in Sliding Contact
,”
Wear
,
7
(
1
), pp.
23
34
.
24.
Ling
,
F. F.
,
1959
, “
A Quasi-Iterative Method for Computing Interface Temperature Distributions
,”
Z. Angew. Math. Phys.
,
10
(
5
), pp.
461
474
.
25.
Kennedy
,
F. E.
, and
Ling
,
F. F.
,
1974
, “
A Thermal, Thermoelastic, and Wear Simulation of a High-Energy Sliding Contact Problem
,”
ASME J. Tribol.
,
96
(
3
), pp.
497
505
.
26.
Batra
,
S. K.
, and
Ling
,
F. F.
,
1967
, “
On Deformation Friction and Interface Shear Stress in Viscoelastic–Elastic Layered System Under a Moving Load
,”
ASLE Trans.
,
10
(
3
), pp.
294
301
.
27.
Han
,
S. W.
, and
Blanchet
,
T. A.
,
1997
, “
Experimental Evaluation of a Steady-State Model for the Wear of Particle-Filled Polymer Composite Materials
,”
ASME J. Tribol.
,
119
(
4
), pp.
694
699
.
28.
Rowe
,
K. G.
,
Erickson
,
G. M.
,
Sawyer
,
W. G.
, and
Krick
,
B. A.
,
2014
, “
Evolution in Surfaces: Interaction of Topography With Contact Pressure During Wear of Composites Including Dinosaur Dentition
,”
Tribol. Lett.
,
54
(
3
), pp.
249
255
.
29.
Sawyer
,
W. G.
,
2004
, “
Surface Shape and Contact Pressure Evolution in Two Component Surfaces: Application to Copper Chemical Mechanical Polishing
,”
Tribol. Lett.
,
17
(
2
), pp.
139
145
.
30.
Lee
,
G. Y.
,
Dharan
,
C. K. H.
, and
Ritchie
,
R. O.
,
2002
, “
A Physically-Based Abrasive Wear Model for Composite Materials
,”
Wear
,
252
(
3
), pp.
322
331
.
31.
Blau
,
P. J.
,
2006
, “
On the Nature of Running-In
,”
Tribol. Int.
,
38
(
11
), pp.
1007
1012
.
32.
Archard
,
J. F.
, and
Hirst
,
W.
,
1957
, “
An Examination of a Mild Wear Process
,”
Proc. R. Soc. London A
,
238
(
1215
), pp.
515
528
.
33.
Viafara
,
C. C.
,
Castro
,
M. I.
,
Velez
,
J. M.
, and
Toro
,
A.
,
2005
, “
Unlubricated Sliding Wear of Pearlitic and Bainitic Steels
,”
Wear
,
259
(
1
), pp.
405
411
.
34.
Queener
,
C. A.
,
Smith
,
T. C.
, and
Mitchell
,
W. L.
,
1965
, “
Transient Wear of Machine Parts
,”
Wear
,
8
(
5
), pp.
391
400
.
35.
Rodríguez-Tembleque
,
L.
,
Abascal
,
R.
, and
Aliabadi
,
M. H.
,
2010
, “
A Boundary Element Formulation for Wear Modeling on 3D Contact and Rolling–Contact Problems
,”
Int. J. Solids Struct.
,
47
(
18–19
), pp.
2600
2612
.
36.
Erickson
,
G. M.
,
Krick
,
B. A.
,
Hamilton
,
M.
,
Bourne
,
G. R.
,
Norell
,
M. A.
,
Lilleodden
,
E.
, and
Sawyer
,
W. G.
,
2012
, “
Complex Dental Structure and Wear Biomechanics in Hadrosaurid Dinosaurs
,”
Science
,
338
(
6103
), pp.
98
101
.
37.
Erickson
,
G. M.
,
Sidebottom
,
M. A.
,
Kay
,
D. I.
,
Turner
,
K. T.
,
Ip
,
N.
,
Norell
,
M. A.
,
Sawyer
,
W. G.
, and
Krick
,
B. A.
,
2015
, “
Wear Biomechanics in the Slicing Dentition of the Giant Horned Dinosaur Triceratops
,”
Sci. Adv.
,
1
(
5
), p.
e1500055
.
38.
Sidebottom
,
M. A.
,
Feppon
,
F.
,
Vermaak
,
N.
, and
Krick
,
B. A.
, “
Modeling Wear of Multi-Material Composite Wear Surfaces
,”
ASME J. Tribol.
(in press).
39.
Yastrebov
,
V. A.
,
2013
,
Numerical Methods in Contact Mechanics
,
ISTE
,
Wiley
, Hoboken, NJ.
40.
Jang
,
I.
,
Burris
,
D. L.
,
Dickrell
,
P. L.
,
Barry
,
P. R.
,
Santos
,
C.
,
Perry
,
S. S.
,
Phillpot
,
S. R.
,
Sinnott
,
S. B.
, and
Sawyer
,
W. G.
,
2007
, “
Sliding Orientation Effects on the Tribological Properties of Polytetrafluoroethylene
,”
J. Appl. Phys.
,
102
(
12
), p.
123509
.
41.
Mosey
,
N. J.
,
Müser
,
M. H.
, and
Woo
,
T. K.
,
2005
, “
Molecular Mechanisms for the Functionality of Lubricant Additives
,”
Science
,
307
(
5715
), pp.
1612
1615
.
42.
Mo
,
Y.
,
Turner
,
K. T.
, and
Szlufarska
,
I.
,
2009
, “
Friction Laws at the Nanoscale
,”
Nature
,
457
(
7233
), pp.
1116
1119
.
43.
Pastewka
,
L.
,
Moser
,
S.
,
Gumbsch
,
P.
, and
Moseler
,
M.
,
2011
, “
Anisotropic Mechanical Amorphization Drives Wear in Diamond
,”
Nat. Mater.
,
10
(
1
), pp.
34
38
.
44.
Dong
,
Y.
,
Li
,
Q.
, and
Martini
,
A.
,
2013
, “
Molecular Dynamics Simulation of Atomic Friction: A Review and Guide
,”
J. Vac. Sci. Technol. A
,
31
(
3
), p.
030801
.
45.
Jackson
,
R. L.
,
Ghaednia
,
H.
,
Lee
,
H.
,
Rostami
,
A.
, and
Wang
,
X.
,
2013
,
Contact Mechanics
,
Springer Science & Business Media
,
New York
.
46.
Carpick
,
R. W.
,
Ogletree
,
D. F.
, and
Salmeron
,
M.
,
1999
, “
A General Equation for Fitting Contact Area and Friction versus Load Measurements
,”
J. Colloid Interface Sci.
,
211
(
2
), pp.
395
400
.
47.
Kerr
,
A. D.
,
1964
, “
Elastic and Viscoelastic Foundation Models
,”
ASME J. Appl. Mech.
,
31
(
3
), pp.
491
498
.
48.
Kerr
,
A. D.
,
1965
, “
A Study of a New Foundation Model
,”
Acta Mech.
,
1
(
2
), pp.
135
147
.
49.
Pasternak
,
P. L.
,
1954
, “
On a New Method of Analysis of an Elastic Foundation by Means of Two Foundation Constants
,”
Gosudarstvennoe Izdatel'stvo Litearturi po Stroitel'stvu i Arkhitekture
, Moscow, USSR (in Russian).
50.
Allaire
,
G.
,
2007
, “
Numerical Analysis and Optimization. An Introduction to Mathematical Modelling and Numerical Simulation
,”
Numerical Mathematics and Scientific Computation
, Vol.
87
,
Oxford University Press
,
Oxford, UK
.
51.
Johansson
,
L.
,
1994
, “
Numerical Simulation of Contact Pressure Evolution in Fretting
,”
ASME J. Tribol.
,
116
(
2
), pp.
247
254
.
52.
Bendsoe
,
M. P.
, and
Sigmund
,
O.
,
2003
,
Topology Optimization: Theory, Methods and Applications
,
Springer, Berlin
.
53.
Allaire
,
G.
,
2002
, “
Shape Optimization by the Homogenization Method
,”
Applied Mathematical Sciences
, Vol.
146
,
Springer Verlag
,
New York
.
54.
Eschenauer
,
H. A.
, and
Olhoff
,
N.
,
2001
, “
Topology Optimization of Continuum Structures: A Review
,”
ASME Appl. Mech. Rev.
,
54
(
4
), pp.
331
390
.
55.
Wang
,
M. Y.
, and
Wang
,
X.
,
2005
, “
A Level-Set Based Variational Method for Design and Optimization of Heterogeneous Objects
,”
Comput. Aided Des.
,
37
(
3
), pp.
321
337
.
56.
Kang
,
B.-S.
,
Park
,
G.-J.
, and
Arora
,
J. S.
,
2006
, “
A Review of Optimization of Structures Subjected to Transient Loads
,”
Struct. Multidiscip. Optim.
,
31
(
2
), pp.
81
95
.
57.
Allaire
,
G.
,
Dapogny
,
C.
,
Delgado
,
G.
, and
Michailidis
,
G.
,
2014
, “
Multi-Phase Structural Optimization Via a Level Set Method
,”
COCV
,
20
(
2
), pp.
576
611
.
58.
Flodin
,
A.
, and
Andersson
,
S.
,
1997
, “
Simulation of Mild Wear in Spur Gears
,”
Wear
,
207
(
1
), pp.
16
23
.
59.
Allaire
,
G.
,
Jouve
,
F.
, and
Toader
,
A.-M.
,
2004
, “
Structural Optimization Using Sensitivity Analysis and a Level-Set Method
,”
J. Comput. Phys.
,
194
(
1
), pp.
363
393
.
60.
Willing
,
R.
, and
Kim
,
I.
,
2009
, “
Three Dimensional Shape Optimization of Total Knee Replacements for Reduced Wear
,”
Struct. Multidiscip. Optim.
,
38
(
4
), pp.
405
414
.
61.
Markine
,
V. L.
,
Shevtsov
,
I. Y.
, and
Esveld
,
C.
,
2007
, “
An Inverse Shape Design Method for Railway Wheel Profiles
,”
Struct. Multidiscip. Optim.
,
33
(
3
), pp.
243
253
.
62.
Vermaak
,
N.
,
Michailidis
,
G.
,
Parry
,
G.
,
Estevez
,
R.
,
Allaire
,
G.
, and
Bréchet
,
Y.
,
2014
, “
Material Interface Effects on the Topology Optimization of Multi-Phase Structures Using a Level Set Method
,”
Struct. Multidiscip. Optim.
,
50
(
4
), pp.
623
644
.
63.
Axen
,
N.
, and
Jacobson
,
S.
,
1994
, “
A Model for the Abrasive Wear Resistance of Multiphase Materials
,”
Wear
,
174
(
1
), pp.
187
199
.
64.
Hovis
,
S. K.
,
Talia
,
J. E.
, and
Scattergood
,
R. O.
,
1986
, “
Erosion in Multiphase Systems
,”
Wear
,
108
(
2
), pp.
139
155
.
65.
Hecht
,
F.
,
2012
, “
New Development in FREEFEM++
,”
J. Numer. Math.
,
20
(
3–4
), pp.
251
266
.
66.
Mugler
,
D. H.
, and
Scott
,
R. A.
,
1988
, “
Fast Fourier Transform Method for Partial Differential Equations, Case Study: The 2-D Diffusion Equation
,”
Comput. Math. Appl.
,
16
(
3
), pp.
221
228
.
67.
Duhamel
,
P.
, and
Vetterli
,
M.
,
1990
, “
Fast Fourier Transforms: A Tutorial Review and a State of the Art
,”
Signal Process.
,
19
(
4
), pp.
259
299
.
68.
Enterprises
,
S.
,
2012
, scilab: Free and Open Source Software for Numerical Computation.
You do not currently have access to this content.