Surface plastic deformation due to contact (lubricated or dry) widely exists in many mechanical components, as subsurface stress caused by high-pressure concentrated in the contact zone often exceeds the material yielding limit, and the plastic strain accumulates when the load is increased and/or repeatedly applied to the surface in a rolling contact. However, previous plasto-elastohydrodynamic lubrication (PEHL) studies were mainly for the preliminary case of having a rigid ball (or roller) rotating on a stationary elastic–plastic flat with a fixed contact center, for which the numerical simulation is relatively simple. This paper presents an efficient method for simulating PEHL in a rolling contact. The von Mises yield criteria are used for determining the plastic zone, and the total computation domain is discretized into a number of cuboidal elements underneath the contacting surface, each one is considered as a cuboid with uniform plastic strain inside. The residual stress and surface plastic deformation resulted from the plastic strain can be solved as a half-space eigenstrain–eigenstress problem. A combination of three-dimensional (3D) and two-dimensional (2D) discrete convolution and fast Fourier transform (DC-FFT) techniques is used for accelerating the computation. It is observed that if a rigid ball rolls on an elastic–plastic surface, the characteristics of PEHL lubricant film thickness and pressure distribution are different from those of PEHL in the preliminary cases previously investigated. It is also found that with the increase of rolling cycles, the increment of plastic strain accumulation gradually approaches a stable value or drops down to zero, determined by the applied load and the material hardening properties, eventually causing a groove along the rolling direction. Simulation results for different material hardening properties are also compared to reveal the effect of body materials on the PEHL behaviors.

References

References
1.
Dowson
,
D.
, and
Higginson
,
G. R.
,
1966
,
Elastohydrodynamic Lubrication
,
Pergamon Press
,
New York
.
2.
Hamrock
,
B. J.
, and
Dowson
,
D.
,
1981
,
Ball Bearing Lubrication, the Elastohydrodynamics of Elliptical Contacts
,
Wiley
,
New York
.
3.
Dowson
,
D.
, and
Ehret
,
P.
,
1999
, “
Past, Present and Future Studies in Elastohydrodynamics
,”
Proc. Inst. Mech. Eng., Part J
,
213
(
5
), pp.
317
333
.
4.
Gohar
,
R.
,
2001
,
Elastohydrodynamics
,
2nd ed.
,
Imperial College Press
,
London
.
5.
Spikes
,
H. A.
,
2006
, “
Sixty Years of EHL
,”
Lubr. Sci.
,
18
(
4
), pp.
265
291
.
6.
Zhu
,
D.
, and
Wang
,
Q.
,
2011
, “
Elastohydrodynamic Lubrication: A Gateway to Interfacial Mechanics—Review and Prospect
,”
ASME J. Tribol.
,
133
(
4
), p.
041001
.
7.
Ren
,
N.
,
Zhu
,
D.
,
Chen
,
W. W.
, and
Wang
,
Q. J.
,
2010
, “
Plasto-Elastohydrodynamic Lubrication (PEHL) in Point Contacts
,”
ASME J. Tribol.
,
132
(
3
), p.
031501
.
8.
Ren
,
N.
,
Zhu
,
D.
, and
Wang
,
Q. J.
,
2011
, “
Three-Dimensional Plasto-Elastohydrodynamic Lubrication (PEHL) for Surfaces With Irregularities
,”
ASME J. Tribol.
,
133
(
3
), p.
031502
.
9.
He
,
T.
,
Ren
,
N.
,
Zhu
,
D.
, and
Wang
,
J. X.
,
2014
, “
Plasto-Elastohydrodynamic Lubrication (PEHL) in Point Contacts for Surfaces With Three-Dimensional Sinusoidal Waviness and Real Machined Roughness
,”
ASME J. Tribol.
,
136
(
3
), p.
031504
.
10.
He
,
T.
,
Wang
,
J. X.
,
Wang
,
Z. J.
, and
Zhu
,
D.
,
2015
, “
Simulation of Plasto-Elastohydrodynamic Lubrication (PEHL) in Line Contacts of Infinite and Finite Length
,”
ASME J. Tribol.
,
137
(
4
), p.
041505
.
11.
Liu
,
S. B.
,
Wang
,
Q.
, and
Liu
,
G.
,
2000
, “
A Versatile Method of Discrete Convolution and FFT (DC-FFT) for Contact Analyses
,”
Wear
,
243
(1–2), pp.
101
111
.
12.
Liu
,
S.
, and
Wang
,
Q.
,
2002
, “
Studying Contact Stress Fields Caused by Surface Tractions With a Discrete Convolution and Fast Fourier Transform Algorithm
,”
ASME J. Tribol.
,
124
(
1
), pp.
36
45
.
13.
Jacq
,
C.
,
Nelias
,
D.
,
Lormand
,
G.
, and
Girodin
,
D.
,
2002
, “
Development of a Three-Dimensional Semi-Analytical Elastic–Plastic Contact Code
,”
ASME J. Tribol.
,
124
(
4
), pp.
653
667
.
14.
Chiu
,
Y. P.
,
1978
, “
On the Stress Field and Surface Deformation in a Half Space With a Cuboidal Zone in Which Initial Strains are Uniform
,”
ASME J. Appl. Mech.
,
45
(
2
), pp.
302
306
.
15.
Wang
,
F.
, and
Keer
,
L. M.
,
2005
, “
Numerical Simulation for Three Dimensional Elastic-Plastic Contact With Hardening Behavior
,”
ASME J. Tribol.
,
127
(
3
), pp.
494
502
.
16.
Nelias
,
D.
,
Antaluca
,
E.
,
Boucly
,
V.
, and
Cretu
,
S.
,
2007
, “
A Three-Dimensional Semianalytical Model for Elastic–Plastic Sliding Contacts
,”
ASME J. Tribol.
,
129
(
4
), pp.
761
771
.
17.
Chen
,
W. W.
, and
Wang
,
Q.
,
2008
, “
Thermomechanical Analysis of Elasto-Plastic Bodies in a Sliding Spherical Contact and the Effects of Sliding Speed, Heat Partition, and Thermal Softening
,”
ASME J. Tribol.
,
130
(
4
), p.
041402
.
18.
Chen
,
W. W.
,
Liu
,
S. B.
, and
Wang
,
Q.
,
2008
, “
Fast Fourier Transform Based Numerical Methods for Elasto–Plastic Contacts With Nominally Flat Surface
,”
ASME J. Appl. Mech.
,
75
(
1
), p.
011022
.
19.
Zhou
,
K.
,
Chen
,
W. W.
,
Keer
,
L. M.
, and
Wang
,
Q. J.
,
2009
, “
A Fast Method for Solving Three-Dimensional Arbitrarily Shaped Inclusions in a Half Space
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
9–12
), pp.
885
892
.
20.
Liu
,
S. B.
,
Jin
,
X. Q.
,
Wang
,
Z. J.
,
Keer
,
L. M.
, and
Wang
,
Q.
,
2012
, “
Analytical Solution for Elastic Fields Caused by Eigenstrains in a Half-Space and Numerical Implementation Based on FFT
,”
Int. J. Plast.
,
35
, pp.
135
154
.
21.
Wang
,
Z. J.
,
Jin
,
X. Q.
,
Zhou
,
Q. H.
,
Ai
,
X. L.
,
Keer
,
L. M.
, and
Wang
,
Q.
,
2013
, “
An Efficient Numerical Method With a Parallel Computational Strategy for Solving Arbitrarily Shaped Inclusions in Elasto-Plastic Contact Problems
,”
ASME J. Tribol.
,
135
(
3
), p.
031401
.
22.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University Press
,
London
.
23.
Hahn
,
G. T.
,
Bhargava
,
V.
,
Rubin
,
C. A.
,
Chen
,
Q.
, and
Kim
,
K.
,
1987
, “
Analysis of the Rolling Contact Residual Stresses and Cyclic Plastic Deformation of SAE52100 Steel Ball Bearings
,”
ASME J. Tribol.
,
109
(
4
), pp.
618
626
.
24.
Bhargava
,
V.
,
Hahn
,
G. T.
, and
Rubin
,
C. A.
,
1988
, “
Analysis of Rolling Contact With Kinematic Hardening for Rail Steel Properties
,”
Wear
,
122
(
3
), pp.
267
283
.
25.
Kulkarni
,
S. M.
,
Hahn
,
G. T.
,
Rubin
,
C. A.
, and
Bhargava
,
V.
,
1990
, “
Elastoplastic Finite Element Analysis of Three-Dimensional, Pure Rolling Contact at the Shakedown Limit
,”
ASME J. Appl. Mech.
,
57
(
1
), pp.
57
65
.
26.
Kulkarni
,
S. M.
,
Hahn
,
G. T.
,
Rubin
,
C. A.
, and
Bhargava
,
V.
,
1991
, “
Elasto-Plastic Finite Element Analysis of Three-Dimensional Pure Rolling Contact Above the Shakedown Limit
,”
ASME J. Appl. Mech.
,
58
(
2
), pp.
347
353
.
27.
Howell
,
M.
,
Hahn
,
G. T.
,
Rubin
,
C. A.
, and
McDowell
,
D. L.
,
1995
, “
Finite Element Analysis of Rolling Contact for Non-Linear Kinematic Hardening Bearing Steel
,”
ASME J. Tribol.
,
117
(
4
), pp.
729
736
.
28.
Yu
,
M. M. H.
,
Moran
,
B.
, and
Keer
,
L. M.
,
1995
, “
A Direct Analysis of Three-Dimensional Elastic-Plastic Rolling Contact
,”
ASME J. Tribol.
,
117
(
2
), pp.
234
243
.
29.
Jiang
,
Y.
,
Xu
,
B.
, and
Sehitoglu
,
H.
,
2002
, “
Three-Dimensional Elastic-Plastic Stress Analysis of Rolling Contact
,”
ASME J. Tribol.
,
124
(
4
), pp.
699
708
.
30.
Xu
,
B.
, and
Jiang
,
Y.
,
2002
, “
Elastic-Plastic Finite Element Analysis of Partial Slip Rolling Contact
,”
ASME J. Tribol.
,
124
(
1
), pp.
20
26
.
31.
Chen
,
W. W.
,
Wang
,
Q. J.
,
Wang
,
F.
,
Keer
,
L. M.
, and
Cao
,
J.
,
2008
, “
Three-Dimensional Repeated Elasto-Plastic Point Contacts, Rolling, and Sliding
,”
ASME J. Appl. Mech.
,
75
(
2
), p.
021021
.
32.
Zhu
,
D.
, and
Hu
,
Y. Z.
,
1999
, “
The Study of Transition From Full Film Elastohydrodynamic to Mixed and Boundary Lubrication
,”
The Advancing Frontier of Engineering Tribology, 1999 STLE/ASME H.S. Cheng Tribology Surveillance
, pp.
150
156
.
33.
Hu
,
Y. Z.
, and
Zhu
,
D.
,
2000
, “
A Full Numerical Solution to the Mixed Lubrication in Point Contacts
,”
ASME J. Tribol.
,
122
(
1
), pp.
1
9
.
34.
Zhu
,
D.
,
2007
, “
On Some Aspects in Numerical Solution of Thin-Film and Mixed EHL
,”
Proc. Inst. Mech. Eng., Part J
,
221
(
5
), pp.
561
579
.
35.
Liu
,
Y. C.
,
Wang
,
Q.
,
Wang
,
W.
,
Hu
,
Y.
, and
Zhu
,
D.
,
2006
, “
Effects of Differential Scheme and Mesh Density on EHL Film Thickness in Point Contacts
,”
ASME J. Tribol.
,
128
(
3
), pp.
641
653
.
36.
Fotiu
,
P. A.
, and
Nemat-Nasser
,
S.
,
1996
, “
A Universal Integration Algorithm for Rate-Dependent Elastoplasticity
,”
Comput. Struct.
,
59
(
6
), pp.
1173
1184
.
37.
Wang
,
Z. J.
,
Jin
,
X. Q.
,
Keer
,
L. M.
, and
Wang
,
Q.
,
2013
, “
Novel Model for Partial-Slip Contact Involving a Material With Inhomogeneity
,”
ASME J. Tribol.
,
135
(
4
), p.
041401
.
38.
Wang
,
Z. J.
,
Zhu
,
D.
, and
Wang
,
Q.
,
2014
, “
Elastohydrodynamic Lubrication of Inhomogeneous Materials Using the Equivalent Inclusion Method
,”
ASME J. Tribol.
,
136
(
2
), p.
021501
.
39.
Wang
,
Z. J.
,
Jin
,
X. Q.
,
Liu
,
S. B.
,
Keer
,
L. M.
,
Cao
,
J.
, and
Wang
,
Q.
,
2013
, “
A New Fast Method for Solving Contact Plasticity and Its Application in Analyzing Elasto-Plastic Partial Slip
,”
Mech. Mater.
,
60
(
7
), pp.
18
35
.
You do not currently have access to this content.