In order to achieve greater efficiency or to meet light weight requirements, components are downsized. This, however, increases the load, e.g., Hertzian or nominal contact pressures and stresses of tribosystems. This load is expressed as pa·v-value, the product of nominal contact pressure and sliding velocity. pa·v-values are an effective tool for design engineers for predicting low wear/high wear transitions. Therefore, in the present work, topographical analysis has been combined with the plasticity of micro-asperities and the flash temperatures to estimate the limits of pa·v diagrams. The central piece of this set of models presented here is the calculations for flash temperatures and contact mechanics of micro-asperities. This central piece is used to predict the performance of materials in high velocity (turbines, machinery) and low velocity (human joint) applications. It is shown that the model combination suggested here is a useful tool for screening and preselecting a candidate and new materials with respect to tribological requirements before engaging in expensive testing.

References

References
1.
Ashby
,
M. F.
,
Abulawi
,
J.
, and
Kong
,
H. S.
,
1991
, “
Temperature Maps for Frictional Heating in Dry Sliding
,”
Tribol. Trans.
,
34
(
4
), pp.
577
587
.
2.
Tian
,
X.
, and
Kennedy
,
F. E.
,
1993
, “
Contact Surface Temperature Models for Finite Bodies in Dry and Boundary Lubricated Sliding
,”
ASME J. Tribol.
,
115
(
3
), pp.
411
418
.
3.
Kennedy
,
F. E.
,
2001
, “
Frictional Heating and Contact Temperatures
,”
Modern Tribology Handbook
, Vol.
1
,
B.
Bhushan
, ed.,
CRC Press
,
Boca Raton
, pp.
235
272
.
4.
Griffioen
,
J. A.
,
Bair
,
S.
, and
Winer
,
W. O.
,
1986
,
Infrared Surface Temperature Measurements in a Sliding Ceramic-Ceramic Contact, Mechanisms and Surface Distress
,
D.
Dowson
,
C. M.
Taylor
,
M.
Godet
, and
D.
Berthe
, eds.,
Butterworths
,
London
, pp.
238
245
.
5.
Blok
,
H.
,
1937
, “
Theoretical Study of Temperature Rise at Surfaces of Actual Contact Under Oilliness Lubricating Conditions
,”
General Discussion on Lubrication and Lubricants, Institution of Mechanical Engineers
, London, pp.
222
235
.
6.
Jaeger
,
J. C.
,
1942
, “
Moving Sources of Heat and the Temperature at Sliding Contacts
,”
Proc. R. Soc. N.S.W.
,
76
, pp.
203
224
.
7.
Holm
,
R.
,
1948
, “
Calculation of the Temperature Development in a Contact Heated in the Contact Surface, and Application to the Problem of the Temperature Rise in a Sliding Contact
,”
J. Appl. Phys.
,
19
(
4
), pp.
361
366
.
8.
Archard
,
J. F.
,
1959
, “
The Temperature of Rubbing Surfaces
,”
Wear
,
2
(
6
), pp.
438
455
.
9.
Kuhlmann-Wilsdorf
,
D.
,
1986
, “
Sample Calculation of Flash Temperatures in Silver-Graphite Electric Contact Sliding on Copper
,”
Wear
,
107
(
1
), pp.
71
90
.
10.
Tian
,
X.
, and
Kennedy
,
F. E.
,
1994
, “
Maximum and Average Flash Temperatures in Sliding Contacts
,”
ASME J. Tribol.
,
116
(
1
), pp.
167
174
.
11.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London, A
,
295
(
1442
), pp.
300
319
.
12.
Greenwood
,
J. A.
, and
Tripp
,
J. H.
,
1970
/
1971
, “
The Contact of Nominal Flat Rough Surfaces
,”
Proc. Inst. Mech. Eng.
,
185
(
1970
), pp.
625
633
.
13.
Nayak
,
P. R.
,
1971
, “
Random Process Model of Rough Surfaces
,”
J. Lubr. Technol.
,
93
(
3
), pp.
398
407
.
14.
McCool
,
J. I.
,
1986
, “
Comparison of Models for the Contact of Rough Surfaces
,”
Wear
,
107
(
1
), pp.
37
60
.
15.
Wuttke
,
W.
,
1986
,
Tribophysik (Tribophysics)
,
VEB Fachbuchverlag
,
Leipzig, Germany
, p.
29
.
16.
Smith
,
E. H.
, and
Arnell
,
R. D.
,
2013
, “
A New Approach to the Calculation of Flash Temperatures in Dry, Sliding Contacts
,”
Tribol. Lett.
,
52
(
3
), pp.
407
414
.
17.
Dinc
,
O. S.
,
Ettles
,
C. M.
,
Calabrese
,
S. J.
, and
Scarton
,
H. A.
,
1993
, “
The Measurement of Surface Temperature in Dry or Lubricated Sliding
,”
ASME J. Tribol.
,
115
(
1
), pp.
78
82
.
18.
Rowe
,
K. G.
,
Bennet
,
A. I.
,
Krick
,
B. A.
, and
Sawyer
,
W. G.
,
2013
, “
In Situ Thermal Measurements of Sliding Contacts
,”
Tribol. Int.
,
62
(
6
), pp.
208
214
.
19.
Beckmann
,
G.
, and
Kleis
,
I.
,
1983
,
Abtragverschleiß von Metallen (Dry Wear of Metals)
,
VEB Deutscher Verlag für Grundstoffindustrie
,
Leipzig, Germany
, p.
38
.
20.
Bhushan
,
B.
,
1998
, “
Contact Mechanics of Rough Surfaces in Tribology: Multiple Asperity Contact
,”
Tribol. Lett.
,
4
(
1
), pp.
1
35
.
21.
Rabinowicz
,
E.
,
1977
, “
Abrasive Wear Resistance as a Material Test
,”
Lubr. Eng.
,
33
(
7
), pp.
378
381
.
22.
Bill
,
R. C.
, and
Ludwig
,
L. P.
,
1980
, “
Wear of Seal Materials Used in Aircraft Propulsion Systems
,”
Wear
,
59
(
1
), pp.
165
189
.
23.
Marscher
,
W. D.
,
1980
, “
A Phenomenological Model for Abradable Wear in High Performance Turbomachinery
,”
Wear
,
59
(
1
), pp.
191
211
.
24.
Schmid
,
R. K.
,
1997
, “
New High Temperature Abradables for Gas Turbines
,”
Ph.D. thesis
, Swiss Federal Institute of Technology, Zürich, Switzerland.
25.
Crabos
,
F.
,
1996
, “
Caractérisation, Evaluation et Optimization de Systems Barrier thermique industriels—Application aux turbines a gaz
,” Ph.D. thesis, École Nationale Supérieur de Chimie de Toulouse, Toulouse, France.
26.
Kuhlmann-Wilsdorf
,
D.
,
1985
, “
Flash Temperatures Due to Friction and Joule Heat at Asperity Contacts
,”
Wear
,
105
(
3
), pp.
187
198
.
27.
Alaya
,
M.
,
Oberacker
,
R.
,
Hoffmann
,
M. J.
,
Krebs
,
W.
,
Koch
,
R.
, and
Wittig
,
S.
,
1997
, “
Thermophysikalische Eigenschaften von CeO2- und Y2O3 stabilisierten ZrO2-Wärmedemmschichtsystemen und ihre Auswirkung auf das thermozyklische Verhalten und den Strahlungswärmeübergang
,”
Werkstoffe für die Energietechnik
, Vol.
3
,
H. W.
Günnling
, ed.,
DGM Verlag
,
Hamburg, Germany
, pp.
243
248
.
28.
Kurlov
,
A. S.
, and
Gusev
,
A. I.
,
2011
, “
Effect of Particle Size on the Oxidation of WC Powders During Heating
,”
Inorg. Mater.
,
47
(
2
), pp.
133
138
.
29.
McCouley
,
R. A.
,
2013
,
Corrosion of Ceramic Materials
,
CRC Press/Taylor & Francis Group
,
Boca Raton, FL
, p.
261
.
30.
Yao
,
X.
,
2014
, “
High-Pressure, High-Temperature Sintering of Polycrystalline Boron Nitride With Improved Thermostability and Mechanical Properties for High Temperature Applications
,”
Ph.D. thesis
, University of Utah, Department of Metallurgical Engineering, Salt Lake City, UT.
31.
Melting Point of B2O3
,” www.webelements.com
32.
Clarke
,
I.
, and
Willmann
,
G.
,
1994
, “
Structural Ceramics in Orthopedics
,”
Bone Implant Interface
,
H. U.
Cameron
, ed.,
Mosby
,
St. Louis, MO
, pp.
203
253
.
33.
Sauer
,
W. I.
, and
Anthony
,
M. E.
,
1998
, “
Predicting the Clinical Wear Performance of Orthopedic Bearing Surfaces
,”
Alternative Bearing Surfaces in Total Joint Replacement
,
J. J.
Jacobs
, and
Th. L.
Craig
, eds.,
ASTM
,
West Conshohocken, PA
, pp.
1
29
.
34.
Insley
,
G. M.
,
Turner
,
I.
,
Fisher
,
J.
, and
Streicher
,
R. M.
,
2002
, “
In-Vitro Testing and Validation of Zirconia Toughened Alumina (ZTA)
,”
7th International BIOLOX ® Symposium
, Mar. 15–16, Georg Thieme, Stuttgart, New York, pp.
26
31
.
35.
Bergmann
,
G.
,
Graichen
,
F.
,
Rohlmann
,
N.
,
Verdonschot
,
N.
, and
van Lenthe
,
G. H.
,
2001
, “
Frictional Heating of Total Hip Implants, Part 2: Finite Element Study
,”
J. Biomech.
,
34
(
4
), pp.
429
435
.
36.
Mattei
,
L.
,
Di Puccio
,
F.
,
Piccigallo
,
B.
, and
Ciulli
,
E.
,
2011
, “
Lubrication and Wear Modeling of Artificial Hip Joints: A Review
,”
Tribol. Int.
,
44
(
5
), pp.
532
549
.
37.
Grabiner
,
M. D.
,
Koh
,
T. J.
,
Lundin
,
Th.
M.
, and
Jahnigen
,
D. W.
,
1993
, “
Kinematics of Recovery From a Stumble
,”
J. Gerontol.
,
48
(
3
), pp.
M97
M102
.
38.
Bergmann
,
G.
,
Deuretzbacher
,
G.
,
Heller
,
M.
,
Graichen
,
F.
,
Rohlmann
,
A.
,
Strauss
,
J.
, and
Duda
,
G. N.
,
2001
, “
Hip Contact Forces and Gait Patterns From Routine Activities
,”
J. Biomech.
,
34
(
7
), pp.
859
871
.
39.
Scholes
,
S. C.
,
Unsworth
,
A.
, and
Goldsmith
,
A. A. J.
,
2000
, “
A Frictional Study of Total Hip Joint Replacements
,”
Phys. Med. Biol.
,
45
(
12
), pp.
3721
3735
.
40.
Grove
,
T. H.
, and
Budinski
,
K. G.
,
1981
, “
Predicting Polymer Serviceability for Wear Applications
,”
Wear Test of Plastics: Selection and Use
,
ASTM
,
West Conshohocken, PA
, pp.
59
74
.
41.
Woydt
,
M.
,
2012
,
Application des données tribologiques des matériaux
,
Encyclopédie Techniques de l′Ingénieur
,
Paris
.
42.
Lancaster
,
J. K.
,
1973
, “
Dry Bearings: A Survey of Materials and Factors Affecting Their Performance
,”
Tribology
,
6
(
6
), pp.
219
251
.
43.
Begelinger
,
A.
, and
de Gee
,
A. W. J.
,
1974
, “
Thin Film Lubrication of Sliding Point Contacts of AISI 52100 Steel
,”
Wear
,
28
(
1
), pp.
103
114
.
44.
Hornbogen
,
E.
, and
Friedrich
,
K.
,
1986
, “
Polymerwerkstoffe und deren Verbunde (Polymers and Their Compounds)
,”
Reibung und Verschleiß bei metallischen und nichtmetallischen Werkstoffen
,
K. H. Z.
Gahr
, ed.,
DGM Verlag
,
Oberursel, Germany
, pp.
65
86
.
45.
Khonsari
,
M. M.
, and
Booser
,
E. R.
,
2004
, “
An Engineering Guide for Bearing Selection
,”
TLT
,
60
(
2
), pp.
26
32
.
46.
Lim
,
S. C.
, and
Ashby
,
M. F.
,
1987
, “
Wear-Mechanism Maps
,”
Acta Metall.
,
35
(
1
), pp.
1
24
.
47.
Beckmann
,
G.
,
1980
, “
A Theory of Abrasive Wear Based on Shear Effects in Metal Surfaces
,”
Wear
,
59
(
2
), pp.
421
423
.
48.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
,
1988
, “
Static Friction Coefficient Model for Metallic Rough Surfaces
,”
ASME J. Tribol.
,
110
(
1
), pp.
57
63
.
49.
Kloss
,
H.
, and
Wäsche
,
R.
,
2009
, “
Analytical Approach for Wear Prediction of Metallic and Ceramic Materials in Tribological Applications
,”
Wear
,
266
(
3–4
), pp.
476
481
.
50.
Quinn
,
T. F. J.
,
1967
, “
The Effect of ‘Hot-Spot’ Temperatures on the Unlubricated Wear of Steel
,”
ASLE Trans.
,
10
(
2
), pp.
158
168
.
51.
Johnson
,
K. L.
,
1968
, “
Deformation of a Plastic Wedge by a Rigid Flat Die Under the Action of a Tangential Force
,”
J. Mech. Phys. Solids
,
16
(
6
), pp.
395
402
.
52.
Tanaka
,
T.
,
Kyogoku
,
K.
, and
Nakahara
,
T.
,
2000
, “
An Estimation of Threshold of Mild and Severe Wear Based on Brwell-Strang's Concept by Elastic-Plastic Analysis on Rough Surface Contact
,”
International Tribology Conference
, Nagasaki, Japan, pp.
391
396
.
53.
Pasaribu
,
H. R.
,
Sloetjes
,
J. W.
, and
Schipper
,
D. J.
,
2004
, “
The Transition of Mild to Severe Wear of Ceramics
,”
Wear
,
256
(
6
), pp.
585
591
.
54.
Adachi
,
K.
,
Kato
,
K.
, and
Chen
,
N.
,
1997
, “
Wear Map of Ceramics
,”
Wear
,
203–204
, pp.
291
301
.
55.
Metselaar
,
H. S. C.
,
Kerkwijk
,
B.
,
Mulder
,
E. J.
,
Verweij
,
H.
, and
Schipper
,
D. J.
,
2001
, “
Wear of Ceramics Due to Thermal Stress: A Thermal Severity Parameter
,”
Wear
,
249
(
10–11
), pp.
962
970
.
56.
Bos
,
J.
, and
Moes
,
H.
,
1995
, “
Frictional Heating of Tribological Contacts
,”
ASME J. Tribol.
,
117
(
1
), pp.
171
177
.
57.
Kramer
,
B. M.
, and
Judd
,
P. K.
,
1985
, “
Computational Design of Wear Coatings
,”
J. Vac. Sci. Technol., A
,
3
(
6
), pp.
24
39
.
58.
Johnson
,
D.
,
1981
, “
Engineering Property Data on Selected Ceramics, Single Oxides
,” Vol.
III
, Metals and Ceramic Information Center Battelle, Columbus Laboratories, Columbus, OH.
59.
Friedrich
,
C.
,
Berg
,
G.
,
Broszeit
,
E.
, and
Berger
,
C.
,
1997
, “Datensammlung zu Hartstoffeigenschaften (Data Collection of Hard Material Properties),”
Materialwiss. Werkstofftech.
,
28
(
2
), pp.
59
76
.
60.
Gee
,
M.
,
1989
, personal communication.
61.
1998
, “
Database THERSYST
,” Institut für Kernenergetik und Energiesysteme (IKE), Universität Stuttgart, Stuttgart, Germany.
62.
Telle
,
R.
,
1993
, “
Boride and Carbide Ceramics
,” Materials Science and Technology A Comprehensive Treatment, Vol.
11
,
Wiley–VCH
,
Weinheim, Germany
.
63.
NIST
,
1998
, “
Database NISTCERAM
,” NIST, Ceramic Division, Gaithersburg, MD.
64.
Pastor
,
H.
,
1996
, personal information, Grenoble, France.
You do not currently have access to this content.