The influence of the hip joint formulation on the kinematic response of the model of human gait is investigated throughout this work. To accomplish this goal, the fundamental issues of the modeling process of a planar hip joint under the framework of multibody systems are revisited. In particular, the formulations for the ideal, dry, and lubricated revolute joints are described and utilized for the interaction of femur head inside acetabulum or the hip bone. In this process, the main kinematic and dynamic aspects of hip joints are analyzed. In a simple manner, the forces that are generated during human gait, for both dry and lubricated hip joint models, are computed in terms of the system's state variables and subsequently introduced into the dynamics equations of motion of the multibody system as external generalized forces. Moreover, a human multibody model is considered, which incorporates the different approaches for the hip articulation, namely, ideal joint, dry, and lubricated models. Finally, several computational simulations based on different approaches are performed, and the main results are presented and compared to identify differences among the methodologies and procedures adopted in this work. The input conditions to the models correspond to the experimental data capture from an adult male during normal gait. In general, the obtained results in terms of positions do not differ significantly when different hip joint models are considered. In sharp contrast, the velocity and acceleration plotted vary significantly. The effect of the hip joint modeling approach is clearly measurable and visible in terms of peaks and oscillations of the velocities and accelerations. In general, with the dry hip model, intrajoint force peaks can be observed, which can be associated with the multiple impacts between the femur head and the cup. In turn, when the lubricant is present, the system's response tends to be smoother due to the damping effects of the synovial fluid.

References

1.
Silva
,
M. P. T.
, and
Ambrosio
,
J. A. C.
,
2003
, “
Solution of Redundant Muscle Forces in Human Locomotion With Multibody Dynamics and Optimization Tools
,”
Mech. Based Des. Struct. Mach.
,
31
(
3
), pp.
381
411
.
2.
Horsman
,
K.
,
Koopman
,
H. F.
,
van der Helm
,
F. C.
,
Prosé
,
L. P.
, and
Veeger
,
H. E.
,
2007
, “
Morphological Muscle and Joint Parameters for Musculoskeletal Modelling of the Lower Extremity
,”
Clin. Biomech.
,
22
(
2
), pp.
239
247
.
3.
Arnold
,
E. M.
,
Ward
,
S. R.
,
Lieber
,
R. L.
, and
Delp
,
S. L.
,
2010
, “
A Model of the Lower Limb for Analysis of Human Movement
,”
Ann. Biomed. Eng.
,
38
(
2
), pp.
269
279
.
4.
Pereira
,
A. F.
,
Silva
,
M. T.
,
Martins
,
J. M.
, and
De Carvalho
,
M.
,
2001
, “
Implementation of an Efficient Muscle Fatigue Model in the Framework of Multibody Systems Dynamics for Analysis of Human Movements
,”
Proc. Inst. Mech. Eng., Part K
,
225
(
4
), pp.
359
370
.
5.
Frey-Law
,
L. A.
,
Looft
,
J. M.
, and
Heitsman
,
J.
,
2012
, “
A Three-Compartment Muscle Fatigue Model Accurately Predicts Joint-Specific Maximum Endurance Times for Sustained Isometric Tasks
,”
J. Biomech.
,
45
(
10
), pp.
1803
1808
.
6.
Lobo-Prat
,
J.
,
Font-Llagunes
,
J. M.
,
Gómez-Pérez
,
C.
,
Medina-Casanovas
,
J.
, and
Angulo-Barroso
,
R. M.
,
2014
, “
New Biomechanical Model for Clinical Evaluation of the Upper Extremity Motion in Subjects With Neurological Disorders: An Application Case
,”
Comput. Methods Biomech. Biomed. Eng.
,
17
(
10
), pp.
1144
1156
.
7.
Castro
,
A. P. G.
,
Completo
,
A.
,
Simões
,
J. A.
, and
Flores
,
P.
,
2015
, “
Biomechanical Behaviour of Cancellous Bone on Patellofemoral Arthroplasty With Journey Prosthesis: A Finite Element Study
,”
Comput. Methods Biomech. Biomed. Eng.
,
18
(
10
), pp.
1090
1098
.
8.
Machado
,
M.
,
Flores
,
P.
,
Claro
,
J. C. P.
,
Ambrósio
,
J.
,
Silva
,
M.
,
Completo
,
A.
, and
Lankarani
,
H. M.
,
2010
, “
Development of a Planar Multi-Body Model of the Human Knee Joint
,”
Nonlinear Dyn.
,
60
(
3
), pp.
459
478
.
9.
Wang
,
W.
,
Jin
,
Z.
,
Hu
,
Y.
,
Wang
,
F.
, and
Dowson
,
D.
,
2010
, “
Numerical Lubrication Simulation of Metal-on-Metal Hip Joints: Ball-in-Socket Model and Ball-on-Plane Model
,”
Advanced Tribology
,
Springer
,
Berlin
, pp.
180
181
.
10.
Mattei
,
L.
,
Di Puccio
,
F.
,
Piccigallo
,
B.
, and
Ciulli
,
E.
,
2011
, “
Lubrication and Wear Modeling of Artificial Hip Joints: A Review
,”
Tribol. Int.
,
22
, pp.
532
549
.
11.
Di Puccio
,
F.
, and
Mattei
,
L.
,
2015
, “
Biotribology of Artificial Hip Joints
,”
World J. Orthop.
,
6
(
1
), pp.
77
94
.
12.
Di Puccio
,
F.
, and
Mattei
,
L.
,
2015
, “
A Novel Approach to the Estimation and Application of the Wear Coefficient of Metal-on-Metal Hip Implants
,”
Tribol. Int.
,
83
, pp.
69
76
.
13.
Piazza
,
S. J.
, and
Delp
,
S. L.
,
2001
, “
Three-Dimensional Dynamic Simulation of Total Knee Replacement Motion During a Step-Up Task
,”
ASME J. Biomech. Eng.
,
123
(
6
), pp.
599
606
.
14.
Flores
,
P.
,
Leine
,
R.
, and
Glocker
,
C.
,
2012
, “
Application of the Nonsmooth Dynamics Approach to Model and Analysis of the Contact-Impact Events in Cam-Follower Systems
,”
Nonlinear Dyn.
,
69
(
4
), pp.
2117
2133
.
15.
Guess
,
T. M.
,
2012
, “
Forward Dynamics Simulation Using a Natural Knee With Menisci in the Multibody Framework
,”
Multibody Syst. Dyn.
,
28
(
1–2
), pp.
37
53
.
16.
Quental
,
C.
,
Folgado
,
J.
,
Ambrósio
,
J.
, and
Monteiro
,
J.
,
2012
, “
A Multibody Biomechanical Model of the Upper Limb Including the Shoulder Girdle
,”
Multibody Syst. Dyn.
,
28
(
1–2
), pp.
83
108
.
17.
Dumas
,
R.
,
Moissenet
,
F.
,
Gasparutto
,
X.
, and
Cheze
,
L.
,
2012
, “
Influence of Joint Models on Lower-Limb Musculo-Tendon Forces and Three-Dimensional Joint Reaction Forces During Gait
,”
J. Eng. Med.
,
226
(
2
), pp.
146
160
.
18.
Ribeiro
,
A.
,
Rasmussen
,
J.
,
Flores
,
P.
, and
Silva
,
L. F.
,
2012
, “
Modeling of the Condyle Elements Within a Biomechanical Knee Model
,”
Multibody Syst. Dyn.
,
28
, pp.
181
197
.
19.
Flores
,
P.
, and
Lankarani
,
H. M.
,
2012
, “
Dynamic Response of Multibody Systems With Multiple Clearance Joints
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
3
), p.
031003
.
20.
Koshy
,
C. S.
,
Flores
,
P.
, and
Lankarani
,
H. M.
,
2013
, “
Study of the Effect of Contact Force Model on the Dynamic Response of Mechanical Systems With Dry Clearance Joints: Computational and Experimental Approaches
,”
Nonlinear Dyn.
,
73
(
1–2
), pp.
325
338
.
21.
Tian
,
Q.
,
Sun
,
Y.
,
Liu
,
C.
,
Hu
,
H.
, and
Flores
,
P.
,
2013
, “
Elastohydrodynamic Lubricated Cylindrical Joints for Rigid-Flexible Multibody Dynamics
,”
Comput. Struct.
,
114–115
, pp.
106
120
.
22.
Zhang
,
Z.
,
Xu
,
L.
,
Flores
,
P.
, and
Lankarani
,
H. M.
,
2014
, “
A Kriging Model for the Dynamics of Mechanical Systems With Revolute Joint Clearances
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
3
), p.
031013
.
23.
Askari
,
E.
,
Flores
,
P.
,
Dabirrahmani
,
D.
, and
Appleyard
,
R.
,
2014
, “
Study of the Friction-Induced Vibration and Contact Mechanics of Artificial Hip Joints
,”
Tribol. Int.
,
70
, pp.
1
10
.
24.
Erkaya
,
S.
,
2103
, “
Trajectory Optimization of a Walking Mechanism Having Revolute Joints With Clearance Using ANFIS Approach
,”
Nonlinear Dyn.
,
71
(
1–2
), pp.
75
91
.
25.
Gummer
,
A.
, and
Sauer
,
B.
,
2012
, “
Influence of Contact Geometry on Local Friction Energy and Stiffness of Revolute Joints
,”
ASME J. Tribol.
,
134
(
2
), p.
021402
.
26.
Sun
,
D.
,
Chen
,
G.
,
Wang
,
T.
, and
Sun
,
R.
,
2014
, “
Wear Prediction of a Mechanism With Joint Clearance Involving Aleatory and Epistemic Uncertainty
,”
ASME J. Tribol.
,
136
(
4
), p.
041101
.
27.
Wang
,
G.
,
Liu
,
H.
, and
Deng
,
P.
,
2015
, “
Dynamics Analysis of Spatial Multibody System With Spherical Joint Wear
,”
ASME J. Tribol.
,
137
(
2
), p.
021605
.
28.
Fialho
,
J. C.
,
Fernandes
,
P. R.
,
Eça
,
L.
, and
Folgado
,
J.
,
2007
, “
Computational Hip Joint Simulator for Wear and Heat Generation
,”
J. Biomech.
,
40
(
11
), pp.
2358
2366
.
29.
Machado
,
M.
,
Flores
,
P.
,
Ambrósio
,
J.
, and
Completo
,
A.
,
2011
, “
Influence of the Contact Model on the Dynamic Response of the Human Knee Joint
,”
Proc. Inst. Mech. Eng., Part K
,
225
(
4
), pp.
344
358
.
30.
Meireles
,
F.
,
Machado
,
M.
,
Silva
,
M.
, and
Flores
,
P.
,
2009
, “
Dynamic Modeling and Analysis of Human Locomotion Using Multibody System Methodologies
,”
Int. J. Comput. Vision Biomech.
,
2
(
2
), pp.
199
206
.
31.
Mattei
,
L.
, and
Di Puccio
,
F.
,
2013
, “
Wear Simulation of Metal-on-Metal Hip Replacements With Frictional Contact
,”
ASME J. Tribol.
,
135
(
2
), p.
021402
.
32.
Mattei
,
L.
,
Di Puccio
,
F.
, and
Ciulli
,
E.
,
2013
, “
A Comparative Study of Wear Laws for Soft-on-Hard Hip Implants Using a Mathematical Wear Model
,”
Tribol. Int.
,
63
, pp.
66
77
.
33.
Askari
,
E.
,
Flores
,
P.
,
Dabirrahmani
,
D.
, and
Appleyard
,
R.
,
2014
, “
Nonlinear Vibration and Dynamics of Ceramic on Ceramic Artificial Hip Joints: A Spatial Multibody Modeling
,”
Nonlinear Dyn.
,
76
(
2
), pp.
1365
1377
.
34.
Ouenzerfi
,
G.
,
Massi
,
F.
,
Renault
,
E.
, and
Berthier
,
Y.
,
2015
, “
Squeaking Friction Phenomena in Ceramic Hip Endoprosthesis: Modeling and Experimental Validation
,”
Mech. Syst. Sig. Process.
,
58–59
, pp.
87
100
.
35.
Askari
,
E.
,
Flores
,
P.
,
Dabirrahmani
,
D.
, and
Appleyard
,
R.
,
2015
, “
A Computational Analysis of Squeaking Hip Prostheses
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
2
), p.
024502
.
36.
Nikravesh
,
P. E.
,
1988
,
Computer Aided Analysis of Mechanical Systems
,
Prentice Hall
,
Englewood Cliffs, NJ
.
37.
Machado
,
M.
,
Costa
,
J.
,
Seabra
,
P.
, and
Flores
,
P.
,
2012
, “
The Effect of the Lubricated Revolute Joint Parameters and Hydrodynamic Force Models on the Dynamic Response of Planar Multibody Systems
,”
Nonlinear Dyn
.,
69
(
1–2
), pp.
635
654
.
38.
Lopes
,
D. S.
,
Silva
,
M. T.
,
Ambrósio
,
J. A.
, and
Flores
,
P.
,
2010
, “
A Mathematical Framework for Contact Detection Between Quadric and Superquadric Surfaces
,”
Multibody Syst. Dyn.
,
24
(
3
), pp.
255
280
.
39.
Ahmed
,
S.
,
Lankarani
,
H. M.
, and
Pereira
,
M. F. O. S.
,
1999
, “
Frictional Impact Analysis in Open Loop Multibody Mechanical System
,”
ASME J. Mech. Des.
,
121
(
1
), pp.
119
127
.
40.
Flores
,
P.
, and
Ambrósio
,
J.
,
2010
, “
On the Contact Detection for Contact-Impact Analysis in Multibody Systems
,”
Multibody Syst. Dyn.
,
24
(
1
), pp.
103
122
.
41.
Machado
,
M.
,
Moreira
,
P.
,
Flores
,
P.
, and
Lankarani
,
H. M.
,
2012
, “
Compliant Contact Force Models in Multibody Dynamics: Evolution of the Hertz Contact Theory
,”
Mech. Mach. Theory
,
53
, pp.
99
121
.
42.
Hunt
,
K. H.
, and
Crossley
,
F. R. E.
,
1975
, “
Coefficient of Restitution Interpreted as Damping in Vibroimpact
,”
ASME J. Appl. Mech.
,
42
(2), pp.
440
445
.
43.
Lankarani
,
H. M.
, and
Nikravesh
,
P. E.
,
1990
, “
A Contact Force Model With Hysteresis Damping for Impact Analysis of Multibody Systems
,”
ASME J. Mech. Des.
,
112
(
3
), pp.
369
376
.
44.
Alves
,
J.
,
Peixinho
,
N.
,
Silva
,
M. T.
,
Flores
,
P.
, and
Lankarani
,
H.
,
2015
, “
A Comparative Study on the Viscoelastic Constitutive Laws for Frictionless Contact Interfaces in Multibody Dynamics
,”
Mech. Mach. Theory
,
85
, pp.
172
188
.
45.
Lankarani
,
H. M.
, and
Pereira
,
M. F. O. S.
,
2001
, “
Treatment of Impact With Friction in Planar Multibody Mechanical Systems
,”
Multibody Syst. Dyn.
,
6
(
3
), pp.
203
227
.
46.
Herbert
,
R. G.
, and
McWhannell
,
D. C.
,
1977
, “
Shape and Frequency Composition of Pulses From an Impact Pair
,”
J. Eng. Ind.
,
99
(
3
), pp.
513
518
.
47.
Lee
,
T. W.
, and
Wang
,
A. C.
,
1983
, “
On the Dynamics of Intermittent-Motion Mechanisms—Part 1: Dynamic Model and Response
,”
J. Mech. Trans. Autom. Des.
,
105
(
3
), pp.
534
540
.
48.
Gonthier
,
Y.
,
McPhee
,
J.
,
Lange
,
C.
, and
Piedboeuf
,
J.-C.
,
2004
, “
A Regularized Contact Model With Asymmetric Damping and Dwell-Time Dependent Friction
,”
Multibody Syst. Dyn.
,
11
(
3
), pp.
209
233
.
49.
Flores
,
P.
,
Machado
,
M.
,
Silva
,
M. T.
, and
Martins
,
J. M.
,
2011
, “
On the Continuous Contact Force Models for Soft Materials in Multibody Dynamics
,”
Multibody Syst. Dyn.
,
25
(
3
), pp.
357
375
.
50.
Khulief
,
Y. A.
,
2013
, “
Modeling of Impact in Multibody Systems: An Overview
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(2), p.
021012
.
51.
Goldsmith
,
W.
,
1960
,
Impact—The Theory and Physical Behaviour of Colliding Solids
,
Edward Arnold
,
London, UK
.
52.
Pinkus
,
O.
, and
Sternlicht
,
S. A.
,
1961
,
Theory of Hydrodynamic Lubrication
,
McGraw-Hill
,
New York
.
53.
Nikravesh
,
P. E.
,
2007
, “
Initial Condition Correction in Multibody Dynamics
,”
Multibody Syst. Dyn.
,
18
(
1
), pp.
107
115
.
54.
Baumgarte
,
J.
,
1972
, “
Stabilization of Constraints and Integrals of Motion in Dynamical Systems
,”
Comput. Methods Appl. Mech. Eng.
,
1
(
1
), pp.
1
16
.
55.
Flores
,
P.
,
Machado
,
M.
,
Seabra
,
E.
, and
Silva
,
M. T.
,
2011
, “
A Parametric Study on the Baumgarte Stabilization Method for Forward Dynamics of Constrained Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(
1
), p.
011019
.
56.
Gear
,
W. W.
,
1971
,
Numerical Initial Value Problems in Ordinary Differential Equations
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
57.
Shampine
,
L.
, and
Gordon
,
M.
,
1975
,
Computer Solution of Ordinary Differential Equations: The Initial Value Problem
,
Freeman
,
San Francisco, CA
.
58.
Winter
,
D. A.
,
2005
,
Biomechanics and Motor Control of Human Movement
, 3rd ed.,
Wiley
,
New York
.
59.
Meireles
,
F.
,
2007
, “
Kinematics and Dynamics of Biomechanical Models Using Multibody Systems Methodologies: A Computational and Experimental Study of Human Gait
,” M.Sc. dissertation, University of Minho, Guimarães, Portugal.
60.
Silva
,
M.
, and
Ambrosio
,
J.
,
2004
, “
Sensitivity of the Results Produced by the Inverse Dynamics Analysis of a Human Stride to Perturbed Input Data
,”
Gait Posture
,
19
(
1
), pp.
35
49
.
61.
Ros
,
J.
,
Font-Llagunes
,
J. M.
,
Plaza
,
A.
, and
Kövecses
,
J.
,
2015
, “
Dynamic Considerations of Heel-Strike Impact in Human Gait
,”
Multibody Syst. Dyn.
,
35
(
3
), pp.
215
232
.
62.
Gholami
,
F.
,
Pàmies-Vilà
,
R.
,
Kövecses
,
J.
, and
Font-Llagunes
,
J. M.
,
2015
, “
Effects of Foot Modeling on the Human Ankle Kinematics and Dynamics
,”
Mech. Mach. Theory
,
93
, pp.
175
184
.
63.
Mabuchi
,
K.
,
Sakai
,
R.
,
Ota
,
M.
, and
Ujihira
,
M.
,
2004
, “
Appropriate Radial Clearance of Ceramic-on-Ceramic Total Hip Prostheses to Realize Squeeze-Film Lubrication
,”
Clin. Biomech.
,
19
(
4
), pp.
362
369
.
You do not currently have access to this content.