The cavitation erosion resistance of an X5CrNi18-10 stainless steel, solution treated at temperatures in the range of 1000–1100 °C for 5–50 mins, was investigated using a piezoceramic vibrating system. The variation of the technological parameters led to changes in the degree of the chemical homogeneity and the grain size of the austenite. Heating at 1050 °C for 25 mins, followed by water quenching, led to an increase in the cavitation erosion resistance of about 2.45 times compared to the samples heated for 50 mins. A significant improvement of the cavitation resistance was obtained for the sample maintained at 1050 °C compared to the samples annealed at 1000 and 1100 °C. It was found that the associated cavitation erosion resistance is improved for finer granulation and for higher degree of chemical homogeneity of the austenite.

References

1.
Franc
,
J. P.
, and
Michel
,
J. M.
,
2004
,
Fundamentals of Cavitation
,
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
.
2.
Franc
,
J. P.
,
Avellan
,
F.
,
Belahadji
,
B.
,
Billard
,
J. Y.
,
Briançon-Marjollet
,
L.
,
Fréchou
,
D.
,
Fruman
,
D. H.
,
Karimi
,
A.
,
Kueny
,
J. L.
, and
Michel
,
J. M.
,
1995
,
La Cavitation, Mecanismes phisiques et aspects industriels
,
Press Universitaires de Grenoble
,
Grenoble, France
.
3.
Dular
,
M.
,
Bachert
,
B.
,
Stoffel
,
B.
, and
Širok
,
B.
,
2004
, “
Relationship Between Cavitation Structures and Cavitation Damage
,”
Wear
,
257
(
11
), pp.
1176
1184
.
4.
Karimi
,
A.
,
1987
, “
Cavitation Erosion of a Duplex Stainless Steel
,”
Mater. Sci. Eng.
,
86
(1–2), pp.
191
203
.
5.
Heathcock
,
C. J.
, and
Protheroe
,
B. E.
,
1982
, “
Cavitation Erosion of Stainless Steels
,”
Wear
,
81
(
2
), pp.
311
327
.
6.
Bregliozzi
,
G.
,
Di Schino
,
A.
,
Ahmed
,
S. I.-U.
,
Kenny
,
J. M.
, and
Haefke
,
H.
,
2005
, “
Cavitation Wear Behaviour of Austenitic Stainless Steels With Different Grains Sizes
,”
Wear
,
258
(
1–4
), pp.
503
510
.
7.
Kwok
,
C. T.
,
Cheng
,
F. T.
,
Man
,
H. C.
, and
Ding
,
W. H.
,
2006
, “
Corrosion Characteristics of Nanostructured Layer on 316L Stainless Steel Fabricated by Cavitation-Annealing
,”
Mater. Lett.
,
60
(
19
), pp.
2419
2422
.
8.
Kwok
,
C. T.
,
Man
,
H. C.
, and
Cheng
,
F. T.
,
1998
, “
Cavitation Erosion and Pitting Corrosion of Laser Surface Melted Stainless Steels
,”
Surf. Coat. Technol.
,
99
(
3
), pp.
295
304
.
9.
dos Santos
,
J. F.
,
Garzón
,
C. M.
, and
Tschiptschin
,
A. P.
,
2004
, “
Improvement of the Cavitation Erosion Resistance of an AISI 304L Austenitic Stainless Steel by High Temperature Gas Nitriding
,”
Mater. Sci. Eng.: A
,
382
(
1–2
), pp.
378
386
.
10.
Bordeaşu
,
I.
, and
Mitelea
,
I.
,
2012
, “
Cavitation Erosion Behavior for Some Stainless Steels With Constant Nickel and Variable Chromium Content
,”
Mater. Test.
,
54
(
1
), pp.
53
58
.
11.
Mesa
,
D. H.
,
Garzón
,
C. M.
, and
Tschiptschin
,
A. P.
,
2011
, “
Influence of Cold-Work on the Cavitation Erosion Resistance and on the Damage Mechanisms in High-Nitrogen Austenitic Stainless Steels
,”
Wear
,
271
(9–10), pp.
1372
1377
.
12.
Grewal
,
H. S.
,
Arora
,
H. S.
,
Agrawal
,
A.
, and
Singh
,
H.
,
2013
, “
Surface Modification of Hydroturbine Steel Using Friction Stir Processing
,”
Appl. Surf. Sci.
,
268
(1), pp.
547
555
.
13.
Hajian
,
M.
,
Abdollah-Zadeh
,
A.
,
Rezaei-Nejad
,
S. S.
,
Assadi
,
H.
,
Hadavi
,
S. M. M.
,
Chung
,
K.
, and
Shokouhimehr
,
M.
,
2014
, “
Improvement in Cavitation Erosion Resistance of AISI 316L Stainless Steel by Friction Stir Processing
,”
Appl. Surf. Sci.
,
308
(1), pp.
184
192
.
14.
Espitia
,
L. A.
, and
Toro
,
A.
,
2010
, “
Cavitation Resistance, Microstructure and Surface Topography of Materials Used for Hydraulic Components
,”
Tribol. Int.
,
43
(
11
), pp.
2037
2045
.
15.
Kerner
,
Z.
,
Horváth
,
A.
, and
Nagy
,
G.
,
2007
, “
Comparative Electrochemical Study of 08H18N10T, AISI 304 and AISI 316L Stainless Steel
,”
Electrochim. Acta
,
52
(
27
), pp.
7529
7537
.
16.
Kurc
,
A.
, and
Kalinowska-Ozgowicz
,
E.
,
2009
, “
The Influence of the Martensite Phase Occurring in the Structure of Cold Rolled Austenitic Cr–Ni Steel on Its Mechanical Properties
,”
Arch. Mater. Sci. Eng.
,
37
(
1
), pp.
21
28
.
17.
Kurc
,
A.
,
Kciuk
,
M.
, and
Basiaga
,
M.
,
2010
, “
Influence of Cold Rolling on the Corrosion Resistance of Austenitic Steel
,”
J. Achiev. Mater. Manuf. Eng.
,
38
, pp.
2154
2162
.
18.
Ozgowicz
,
W.
,
Kurc
,
A.
, and
Kciuk
,
M.
,
2010
, “
Effect of Deformation-Induced Martensite on the Microstructure, Mechanical Properties and Corrosion Resistance of Stainless Steel
,”
Arch. Mater. Sci. Eng.
,
43
(
1
), pp.
42
53
.
19.
Chunchun
,
X.
, and
Gang
,
H.
,
2004
, “
Effect of Deformation-Induced Martensite on Pit Propagation Behaviour of 304 Stainless Steel
,”
Anti-Corros. Methods Mater.,
51
(
6
), pp.
381
388
.
20.
Lacombe
,
P.
,
Baroux
,
B.
, and
Beranger
,
G.
,
1993
,
Stainless Steels
,
Les Editions de Physique
,
Paris
.
You do not currently have access to this content.