Prediction of leakage flow and windage heating for labyrinth seals with honeycomb lands is critical in understanding gas turbine engine system performance and predicting its component life. There are several labyrinth seal configurations in use in gas turbines, and for each configuration, there are many geometric factors that can impact a seal's leakage and windage characteristics. One of the factors which has not been thoroughly investigated in previously published work is the presence of rub-grooves in the honeycomb land and its impact on seal performance. This paper describes the development of a numerical methodology aimed at studying this effect. Specifically, a three-dimensional (3D) computational fluid dynamics (CFD) model is developed utilizing commercial finite volume-based software incorporating the renormalization group (RNG) k-ε turbulence model. Using this model, a broad parametric study is conducted by varying honeycomb cell size and radial clearance for a four-tooth straight-through labyrinth seal with and without rub-grooves. The results show good agreement with available experimental data. They further indicate that presence of rub-grooves increases seal leakage and decreases windage heating. The absolute levels depend on the clearance and honeycomb cell size.

References

1.
ESDU 09004 Labyrinth seal flow
,
2009
,
Engineering Science Data Unit
.
2.
Keller
,
C.
,
1934
, “
Stro¨mungsversuche an Labyrinthdichtungen fu¨r Dampfturbinen
,”
Escher Wyss. Mitteilungen
, Vol. 7, pp.
9
13
.
3.
Stocker
,
H. L.
,
Cox
,
D. M.
, and
Holle
,
G. F.
,
1977
, “
Aerodynamic Performance of Conventional and Advanced Design Labyrinth Seals With Solid-Smooth, Abradable and Honeycomb Lands
,” Report No. NASA-CR-135307.
4.
Zimmermann
,
H.
,
Kammerer
,
A.
, and
Wolff
,
K. H.
,
1994
, “
Performance of Worn Labyrinth Seals
,”
ASME
Paper No. 1994-GT-131.
5.
Zimmermann
,
H.
, and
Wolff
,
K. H.
,
1988
, “
Air System Correlations—Part 1: Labyrinth Seals
,”
ASME
Paper No. 98-GT-206.
6.
Rhode
,
D. L.
, and
Allen
,
B. F.
,
1998
, “
Visualization and Measurements of Rub-Groove Leakage Effects on Straight-Through Labyrinth Seals
,”
ASME
Paper No. 98-GT-506.
7.
Rhode
,
D.
, and
Allen
,
B.
,
2001
, “
Measurement and Visualization of Leakage Effects of Rounded Teeth Tips and Rub-Grooves on Stepped Labyrinths
,”
ASME J. Eng. Gas Turbines Power
,
123
(
3
), pp.
604
611
.
8.
Jinming
,
X.
,
Ambrosia
,
M.
, and
Rhode
,
D.
,
2004
, “
Effects of Rub Groove Shape on the Leakage of Abradable Stepped Labyrinth Seals
,”
AIAA
Paper No. 2004-3718.
9.
Rhode
,
D. L.
, and
Adams
,
R. G.
,
2004
, “
Rub-Groove Width and Depth Effects on Flow Predictions for Straight Through Labyrinth Seals
,”
ASME J. Tribol.
,
126
(
4
), pp.
781
787
.
10.
Choi
,
D. C.
, and
Rhode
,
D. L.
,
2004
, “
Development of a Two-Dimensional Computational Fluid Dynamics Approach for Computing Three-Dimensional Honeycomb Labyrinth Leakage
,”
ASME J. Eng. Gas Turbines Power
,
126
(
4
), pp.
794
802
.
11.
Chougule
,
H.
,
Ramchandran
,
R.
,
Ramerth
,
D.
, and
Kandala
,
R.
,
2006
, “
Numerical Investigation of Worn Labyrinth Seals
,”
ASME
Paper No. GT-2006-90690.
12.
Collins
,
D.
,
Teixeira
,
J.
, and
Crudgington
,
P.
,
2008
, “
The Degradation of Abradable Honeycomb Labyrinth Seal Performance Due to Wear
,”
Sealing Technol.
,
2008
(
8
), pp.
7
10
.
13.
Denecke
,
J.
,
Schramm
,
V.
,
Kim
,
S.
, and
Wittig
,
S.
,
2003
Influence of Rub-Grooves on Labyrinth Seal Leakage
,”
ASME J. Turbomach.
,
125
(
2
), pp.
387
393
.
14.
McGreehan
,
W. F.
, and
Ko
,
S. H.
,
1989
, “
Power Dissipation in Smooth and Honeycomb Labyrinth Seals
,”
ASME
Paper No. 89-GT-220.
15.
Millward
,
J. A.
, and
Edwards
,
M. F.
,
1996
, “
Windage Heating of Air Passing Through Labyrinth Seals
,”
ASME J. Turbomach.
,
118
(
2
), pp.
414
419
.
16.
Denecke
,
J.
,
Dullenkopf
,
K.
,
Wittig
,
S.
, and
Bauer
,
H. J.
,
2005
, “
Experimental Investigation of Total Temperature Increase and Swirl Development in Rotating Labyrinth Seals
,”
ASME
Paper No. GT2005-68677.
17.
Denecke
,
J.
,
Farber
,
J.
,
Dullenkopf
,
K.
, and
Bauer
,
H. J.
,
2008
, “
Interdependence of Discharge Behavior, Swirl Development and Total Temperature Increase in Rotating Labyrinth Seals
,”
ASME
Paper No. GT2008-51429.
18.
Yan
,
X.
,
Li
,
J.
, and
Feng
,
Z.
,
2010
, “
Effects of Inlet Preswirl and Cell Diameter and Depth on Honeycomb Seal Characteristics
,”
ASME J. Eng. Gas Turbines Power
,
132
(
12
), p.
122505
.
19.
Hodkinson
,
B.
,
1939
, “
Estimation of Leakage Through a Labyrinth Gland
,”
Proc. Inst. Mech. Eng.
,
141
(
1
), pp.
283
288
.
20.
Waschka
,
W.
,
Wittig
,
S.
, and
Kim
,
S.
,
1992
, “
Influence of High Rotational Speeds on Heat Transfer and Discharge Coefficient in Labyrinth Seals
,”
ASME J. Turbomach.
,
114
(
2
), pp.
462
468
.
21.
Willenborg
,
K.
,
Kim
,
S.
, and
Wittig
,
S.
,
2001
, “
Effects of Reynolds Number and Pressure Ratio on Leakage Loss and Heat Transfer in a Stepped Labyrinth Seal
,”
ASME J. Turbomach.
,
123
(
4
), pp.
815
822
.
22.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
23.
Yakhot
,
V.
,
Orszag
,
S. A.
,
Thangam
,
S.
,
Gatski
,
T. B.
, and
Speziale
,
C. G.
,
1992
, “
Development of Turbulence Models for Shear Flows by a Double Expansion Technique
,”
Phys. Fluids A
,
4
(
7
), pp.
1510
1520
.
You do not currently have access to this content.