Pipelines are the most flexible, economic, and convenient way for oil and gas transportation. Material degradation by slurry erosion is a common feature in oil transmission pipeline. In the present work, slurry erosion of AISI 1018, AISI 1080, API X42, and API X70 steels is investigated in terms of slurry velocity and target material microstructure. The slurry velocity and impact angle employed were 0.2, 0.29, 0.36, and 0.43 m s−1 and 90 deg, respectively. It is found that erosion rate increases with increasing slurry velocity. Scanning electron microscopy was employed to investigate the eroded surface and subsurface of the steels. Plastic deformation, microcutting, and fracture are identified as dominant erosion mechanisms. Pearlitic microstructure exhibits superior erosion resistance compared to ferrite depending upon slurry velocity and microstructural orientation.

References

References
1.
Matsumura
,
M.
,
Oka
,
Y.
,
Hiura
,
H.
, and
Yano
,
M.
,
1991
, “
The Role of Passivation Film in Preventing Slurry Erosion–Corrosion of Austenitic Stainless Steel
,”
ISIJ Int.
,
31
(
2
), pp.
168
176
.
2.
National Transportation Safety Board
,
1998
, “
Pipeline Incident Report—Natural Gas Pipeline Rupture and Fire in South Riding
,” National Technical Information Service, Alexandria, VA, Report No. PB2001-9165010.
3.
National Transportation Safety Board
,
2000
, “
Pipeline Incident Report—Natural Gas Pipeline Rupture and Fire
,” National Technical Information Service, Carlsbad, NM, Report No. PB2003-916501.
4.
Lin
,
H. C.
,
Wu
,
S. K.
, and
Yeh
,
C. H.
,
2001
, “
A Comparison of Slurry Erosion Characteristics of TiNi Shape Memory Alloys and SUS304 Stainless Steel
,”
Wear
,
249
(
7
), pp.
557
565
.
5.
Bitter
,
J. G. A.
,
1963
, “
A Study of Erosion Phenomena: Part I
,”
Wear
,
6
(
1
), pp.
5
21
.
6.
Bitter
,
J. G. A.
,
1963
, “
A Study of Erosion Phenomena: Part II
,”
Wear
,
6
(
3
), pp.
169
190
.
7.
Clark
,
H. M.
, and
Wong
,
K. K.
,
1995
, “
Impact Angle, Particle Energy and Mass Loss in Erosion by Dilute Slurries
,”
Wear
,
186–187
(
Part II
), pp.
454
464
.
8.
Chen
,
X.
,
McLaury
,
B. S.
, and
Shirazi
,
S. A.
,
2004
, “
Application and Experimental Validation of a Computational Fluid Dynamics (CFD)-Based Erosion Prediction Model in Elbows and Plugged Tees
,”
Comput. Fluids
,
33
(
10
), pp.
1251
1272
.
9.
Abd-Elrhman
,
Y. M.
,
Abouel-Kasem
,
A.
,
Emara
,
K. M.
, and
Ahmed
,
S. M.
,
2014
, “
Effect of Impact Angle on Slurry Erosion Behavior and Mechanisms of Carburized AISI 5117 Steel
,”
ASME Tribol.
,
136
(
1
), pp.
011106
.
10.
Mansouri
,
A.
,
Arabnejad
,
H.
,
Shirazi
,
S. A.
, and
McLaury
,
B. S.
,
2015
, “
A Combined CFD/Experimental Methodology for Erosion Prediction
,”
Wear
,
332–333
, pp.
1097
1097
.
11.
Gnanavelu
,
A.
,
Kapur
,
N.
,
Neville
,
A.
,
Flores
,
J. F.
, and
Ghorbani
,
N.
,
2011
, “
A Numerical Investigation of a Geometry Independent Integrated Method to Predict Erosion Rates in Slurry Erosion
,”
Wear
,
271
(
5–6
), pp.
712
719
.
12.
Zu
,
J. B.
,
Hutchings
, I
. M.
, and
Burstein
,
G. T.
,
1990
, “
Design of a Slurry Erosion Test Rig
,”
Wear
,
140
(
2
), pp.
331
344
.
13.
Levy
,
A. V.
, and
Hickey
,
G.
,
1987
, “
Liquid–Solid Particle Slurry Erosion of Steels
,”
Wear
,
117
(
2
), pp.
129
146
.
14.
Levy
,
A. V.
,
Yan
,
J.
, and
Arora
,
V. D.
,
1985
, “
Sand–Water Slurry Erosion of Carburized AISI 8620 Steel
,”
Wear
,
101
(
2
), pp.
117
126
.
15.
Jordan
,
K. G.
,
1998
, “
Erosion in Multiphase Production of Oil & Gas
,” Corrosion 98, NACE International Annual Conference, San Antonio, TX, Paper No. 58.
16.
McLaury
,
B. S.
,
Rybicki
,
E. F.
,
Shadley
,
J. R.
, and
Shirazi
,
S. A.
,
1999
, “
How Operating and Environmental Conditions Affect Erosion
,” Corrosion 99, NACE International Annual Conference, San Antonio, TX, Paper No. 34.
17.
McLaury
,
B. S.
, and
Shirazi
,
S. A.
,
1999
, “
Generalization of API RP 14E for Erosive Service in Multiphase Production
,”
SPE
Annual Technical Conference and Exhibition
, Houston, TX, Oct. 3–6, Paper No. 56812.
18.
McLaury
,
B. S.
, and
Shirazi
,
S. A.
,
2000
, “
An Alternate Method to API RP 14E for Predicting Solids Erosion in Multiphase Flow
,”
ASME. J. Energy Resour. Technol.
,
122
(
3
), pp.
115
122
.
19.
Islam
,
Md. A.
,
Alam
,
T.
,
Farhat
,
Z. N.
,
Mohamed
,
A.
, and
Alfantazi
,
A.
,
2015
, “
Effect of Microstructure on the Erosion Behavior of Carbon Steel
,”
Wear
,
332–333
, pp.
1080
1089
.
20.
Mazumder
,
Q. H.
,
Shirazi
,
S. A.
,
McLaury
,
B. S.
,
Shadley
,
J. R.
, and
Rybicki
,
E. F.
,
2005
, “
Development and Validation of a Mechanistic Model to Predict Solid Particle Erosion in Multiphase Flow
,”
Wear
,
259
(
1–6
), pp.
203
207
.
21.
Desale
,
G. R.
,
Gandhi
,
B. K.
, and
Jain
,
S. C.
,
2008
, “
Slurry Erosion of Ductile Materials Under Normal Impact Condition
,”
Wear
,
264
(
3–4
), pp.
322
330
.
22.
Desale
,
G. R.
,
Gandhi
,
B. K.
, and
Jain
,
S. C.
,
2005
, “
Improvement in the Design of a Pot Tester to Simulate Erosion Wear Due to Solid–Liquid Mixture
,”
Wear
,
259
(
1–6
), pp.
196
202
.
23.
Desale
,
G. R.
,
Gandhi
,
B. K.
, and
Jain
,
S. C.
,
2006
, “
Effect of Erodent Properties on Erosion Wear of Ductile Type Materials
,”
Wear
,
261
(
7–8
), pp.
914
921
.
24.
Recco
,
A. A. C.
,
López
,
D.
,
Bevilacqua
,
A. F.
,
Silva
,
F. D.
, and
Tschiptschin
,
A. P.
,
2007
, “
Improvement of the Slurry Erosion Resistance of an Austenitic Stainless Steel With Combinations of Surface Treatments: Nitriding and Tin Coating
,”
Surf. Coat. Technol.
,
202
(
4–7
), pp.
993
997
.
25.
Al-Bukhaiti
,
M. A.
,
Ahmed
,
S. M.
,
Badran
,
F. M. F.
, and
Emara
,
K. M.
,
2007
, “
Effect of Impingement Angle on Slurry Erosion Behaviour and Mechanisms of 1017 Steel and High-Chromium White Cast Iron
,”
Wear
,
262
(
9–10
), pp.
1187
1198
.
26.
Burstein
,
G. T.
, and
Sasaki
,
K.
,
2000
, “
Effect of Impact Angle on the Slurry Erosion–Corrosion of 304L Stainless Steel
,”
Wear
,
240
(
1–2
), pp.
80
94
.
27.
Stack
,
M. M.
, and
Abd El-Badia
,
T. M.
,
2008
, “
Some Comments on Mapping the Combined Effects of Slurry Concentration, Impact Velocity and Electrochemical Potential on the Erosion–Corrosion of WC/Co–Cr Coatings
,”
Wear
,
264
(
9–10
), pp.
826
837
.
28.
Humphrey
,
J. A. C.
,
1990
, “
Fundamentals of Fluid Motion in Erosion by Solid Particle Impact
,”
Int. J. Heat Fluid Flow
,
11
(
3
), pp.
170
195
.
29.
Clark
,
H. M.
,
1991
, “
On the Impact Rate and Impact Energy of Particles in a Slurry Pot Erosion Tester
,”
Wear
,
147
(
1
), pp.
165
183
.
30.
Clark
,
H. M.
,
2002
, “
Particle Velocity and Size Effects in Laboratory Slurry Erosion Measurements OR. Do You Know What Your Particles are Doing?
Tribol. Int.
,
35
(
10
), pp.
617
624
.
31.
Clark
,
H. M.
,
1992
, “
The Influence of the Flow Field in Slurry Erosion
,”
Wear
,
152
(
2
), pp.
223
240
.
32.
Gupta
,
R.
,
Singh
,
S. N.
, and
Seshadri
,
V.
,
1995
, “
Prediction of Uneven Wear in a Slurry Pipeline on the Basis of Measurements in a Pot Tester
,”
Wear
,
184
(
2
), pp.
169
178
.
33.
Gandhi
,
B. K.
,
Singh
,
S. N.
, and
Seshadri
,
V.
,
1999
, “
Study of the Parametric Dependence of Erosion Wear for the Parallel Flow of Solid–Liquid Mixtures
,”
Tribol. Int.
,
32
(
5
), pp.
275
282
.
34.
Levy
,
A. V.
, and
Yau
,
P.
,
1984
, “
Erosion of Steels in Liquid Slurries
,”
Wear
,
98
, pp.
163
182
.
35.
Levy
,
A. V.
,
Jee
,
N.
, and
Yau
,
P.
,
1987
, “
Erosion of Steels in Coal-Solvent Slurries
,”
Wear
,
117
(
2
), pp.
115
127
.
36.
Lindsley
,
B. A.
, and
Marder
,
A. R.
,
1999
, “
The Effect of Velocity on the Solid Particle Erosion Rate of Alloys
,”
Wear
,
225–229
(
Part I
), pp.
510
516
.
37.
Cooke
,
R.
,
1996
, “
Pipeline Material Evaluation for the Mina Grande Hydrohoist System
,”
BHR Group Conference Series Publication
, Vol.
20
, pp.
455
478
.
38.
Clark
,
H. McI.
, and
Hartwich
,
R. B.
,
2001
, “
A Re-Examination of the ‘Particle Size Effect’ in Slurry Erosion
,”
Wear
,
248
(
1–2
), pp.
147
161
.
39.
Wong
,
K. K.
, and
Clark
,
H. M.
,
1993
, “
A Model of Particle Velocities and Trajectories in a Slurry Pot Erosion Tester
,”
Wear
,
160
(
1
), pp.
95
104
.
40.
Wood
,
R. J. K.
,
Jones
,
T. F.
,
Ganeshalingam
,
J.
, and
Miles
,
N. J.
,
2004
, “
Comparison of Predicted and Experimental Erosion Estimates in Slurry Ducts
,”
Wear
,
256
(
9–10
), pp.
937
947
.
41.
Lin
,
F.
, and
Shao
,
H.
,
1991
, “
The Effect of Impingement Angle on Slurry Erosion
,”
Wear
,
141
(
2
), pp.
279
289
.
42.
Hutchings
,
I. M.
,
1987
, “
Wear by Particulates
,”
Chem. Eng. Sci.
,
42
(
4
), pp.
869
878
.
43.
Postlethwaite
,
J.
, and
Nesic
,
S.
,
1993
, “
Erosion in Disturbed Liquid/Particle Pipe Flow: Effects of Flow Geometry and Particle Surface Roughness
,”
Corrosion
,
49
(
10
), pp.
850
857
.
44.
Stack
,
M. M.
,
Zhou
,
S.
, and
Newman
,
R. C.
,
1996
, “
Effects of Particle Velocity and Applied Potential on Erosion of Mild Steel in Carbonate/Bicarbonate Slurry
,”
Mater. Sci. Technol.
,
12
(
3
), pp.
261
268
.
45.
López
,
D.
,
Congote
,
J. P.
,
Cano
,
J. R.
,
Toro
,
A.
, and
Tschiptschin
,
A. P.
,
2005
, “
Effect of Particle Velocity and Impact Angle on the Corrosion–Erosion of AISI 304 and AISI 420 Stainless Steels
,”
Wear
,
259
(
1–6
), pp.
118
124
.
46.
Finnie
,
I.
,
1960
, “
Erosion of Surfaces by Solid Particles
,”
Wear
,
3
(
2
), pp.
87
103
.
47.
Tilly
,
G. P.
,
1973
, “
A Two Stage Mechanism of Ductile Erosion
,”
Wear
,
23
(
1
), pp.
87
96
.
48.
Stevenson
,
A. N. J.
, and
Hutchings
,
I. M.
,
1995
, “
Scaling Laws for Particle Velocity in the Gas-Blast Erosion Test
,”
Wear
,
181–183
, pp.
56
62
.
49.
Kosel
,
T. H.
,
1992
, “
Solid Particle Erosion
,”
ASM Handbook
, Vol.
18
,
ASM International
, Materials Park, OH.
50.
Molinari
,
J. F.
, and
Ortiz
,
M.
,
2002
, “
A Study of Solid-Particle Erosion of Metallic Targets
,”
Int. J. Impact Eng.
,
27
(
4
), pp.
347
358
.
51.
Mbabazi
,
J. G.
,
Sheer
,
T. J.
, and
Shandu
,
R.
,
2004
, “
A Model to Predict Erosion on Mild Steel Surfaces Impacted by Boiler Fly Ash Particles
,”
Wear
,
257
(
5–6
), pp.
612
624
.
52.
Akbarzadeh
,
E.
,
Elsaadawy
,
E.
,
Sherik
,
A. M.
,
Spelt
,
J. K.
, and
Papini
,
M.
,
2012
, “
The Solid Particle Erosion of 12 Metals Using Magnetite Erodent
,”
Wear
,
282–283
, pp.
40
51
.
53.
Finnie
,
I.
,
Stevick
,
G. R.
, and
Ridgely
,
J. R.
,
1992
, “
The Influence of Impingement Angle on the Erosion of Ductile Metals by Angular Abrasive Particles
,”
Wear
,
152
(
1
), pp.
91
98
.
54.
Torrance
,
A. A.
,
1981
, “
An Explanation of the Hardness Differential Needed for Abrasion
,”
Wear
,
68
(
2
), pp.
263
266
.
55.
Liebhard
,
M.
, and
Levy
,
A.
,
1991
, “
The Effect of Erodent Particle Characteristics on the Erosion of Metals
,”
Wear
,
151
(
2
), pp.
381
390
.
56.
Levy
,
A. V.
, and
Chik
,
P.
,
1983
, “
The Effects of Erodent Composition and Shape on the Erosion of Steel
,”
Wear
,
89
(
2
), pp.
151
162
.
57.
Hutchings
,
I. M.
,
1981
, “
A Model for the Erosion of Metals by Spherical Particles at Normal Incidence
,”
Wear
,
70
(
3
), pp.
269
281
.
58.
Finnie
,
I.
,
1958
, “
The Mechanism of Erosion of Ductile Metals
,”
Third U.S. National Congress of Applied Mechanics
,
ASME
,
New York
, pp.
527
532
.
59.
Salik
,
J.
, and
Buckley
,
D.
,
1981
, “
Effects of Erodent Particle Shape and Various Heat Treatments on Erosion Resistance of Plain Carbon Steel
,” NASA Technical Paper No. 1755.
60.
Foley
,
T.
, and
Levy
,
A.
,
1983
, “
The Erosion of Heat-Treated Steels
,”
Wear
,
91
(
1
), pp.
45
64
.
61.
Levy
,
A. V.
,
Yan
,
J.
, and
Patterson
,
J.
,
1986
, “
Elevated Temperature Erosion of Steels
,”
Wear
,
108
(
1
), pp.
43
60
.
62.
Levy
,
A. V.
, and
Jahanmir
,
S.
,
1980
,
Corrosion–Erosion Behavior of Materials
,
Metallurgical Society of AIME
,
New York
, pp.
177
189
.
63.
Divakar
,
M.
,
Agarwal
, V
. K.
, and
Singh
,
S. N.
,
2005
, “
Effect of the Material Surface Hardness on the Erosion of AISI316
,”
Wear
,
259
(
1–6
), pp.
110
117
.
64.
Gadhikar
,
A. A.
,
Sharma
,
A.
,
Goel
,
D. B.
, and
Sharma
,
C. P.
,
2014
, “
Effect of Carbides on Erosion Resistance of 23-8-N Steel
,”
Bull. Mater. Sci.
,
37
(
2
), pp.
315
319
.
65.
McCabe
,
L. P.
,
Sargent
,
G. A.
, and
Conrad
,
H.
,
1985
, “
Effect of Microstructure on the Erosion of Steel by Solid Particles
,”
Wear
,
105
(
3
), pp.
257
277
.
66.
Hong
,
H. U.
,
Rho
,
B. S.
, and
Nam
,
S. W.
,
2001
, “
Correlation of the M23C6 Precipitation Morphology With Grain Boundary Characteristics in Austenitic Stainless Steel
,”
Mater. Sci. Eng. A
,
318
(
1–2
), pp.
285
292
.
67.
Lindsley
,
B. A.
, and
Marder
,
A. R.
,
1998
, “
Solid Particle Erosion of an Fe–Fe3C Metal Matrix Composite
,”
Metall. Mater. Trans. A
,
29
(
3
), pp.
1071
1079
.
68.
Lindsley
,
B. A.
,
Marder
,
A. R.
, and
Lewnard
,
J. J.
,
1995
, “
The Effect of Circulating Fluidized Bed Particle Characteristics on Erosion of 1020 Carbon Steel
,”
Wear
,
188
(
1–2
), pp.
33
39
.
69.
Hutchings
,
I. M.
,
1992
,
Tribology
,
Butterworth-Heinemann
,
Oxford, UK
, pp.
192
193
.
70.
Bazanini
,
G.
,
2001
, “
Vapour and Air Bubble Collapse Analysis in Viscous Compressible Water
,”
Semina
,
22
(
1
), pp.
13
18
.
71.
ASTM Standard G32-10
,
2011
, Standard Test Method for Cavitation Erosion Using Vibratory Apparatus, ASTM International, West Conshohocken, PA.
72.
American Society for Metals
,
1992
,
ASM Handbook: Friction, Lubrication, and Wear Technology
, Vol.
18
,
ASM International
, Materials Park, OH, pp.
218
219
.
73.
Grewal
,
H. S.
,
Agrawal
,
A.
, and
Singh
,
H.
,
2013
, “
Slurry Erosion Mechanism of Hydroturbine Steel: Effect of Operating Parameters
,”
Tribol. Lett.
,
52
(
2
), pp.
287
303
.
74.
Islam
,
M. A.
, and
Farhat
,
Z. N.
,
2012
, “
The Synergistic Effect Between Erosion and Corrosion of API Pipeline in CO2 and Saline Medium
,”
Tribol. Int.
,
68
, pp.
26
34
.
75.
Islam
,
M. A.
, and
Farhat
,
Z. N.
,
2014
, “
Effect of Impact Angle and Velocity on Erosion of API X42 Pipeline Steel Under High Abrasive Feed Rate
,”
Wear
,
311
(
1–2
), pp.
180
190
.
76.
Clark
,
H. McI.
,
1991
, “
A Comparison of the Erosion Rate of Casing Steels by Sand–Oil Suspensions
,”
Wear
,
150
(
1–2
), pp.
217
230
.
77.
Tan
,
K. S.
,
Wood
,
R. J. K.
, and
Stokes
,
K. R.
,
2003
, “
The Slurry Erosion Behaviour of High Velocity Oxy-Fuel (HVOF) Sprayed Aluminium Bronze Coatings
,”
Wear
,
255
(
1–6
), pp.
195
205
.
78.
Oka
,
Y.
,
Matsumura
,
M.
, and
Kawabata
,
T.
,
1993
, “
Relationship Between Surface Hardness and Erosion Damage Caused by Solid Particle Impact
,”
Wear
,
162–164
(
Part B
), pp.
688
695
.
79.
Sundararajan
,
G.
,
1991
, “
The Depth of Plastic Deformation Beneath Eroded Surfaces: The Influence of Impact Angle and Velocity, Particle Shape and Material Properties
,”
Wear
,
149
(
1–2
), pp.
129
153
.
80.
Arora
,
H. S.
,
Grewal
,
H. S.
,
Singh
,
H.
, and
Mukherjee
,
S.
,
2013
, “
Zirconium Based Bulk Metallic Glass—Better Resistance to Slurry Erosion Compared to Hydroturbine Steel
,”
Wear
,
307
(
1–2
), pp.
28
34
.
81.
Zheng
,
Z. B.
,
Zheng
,
Y. G.
,
Sun
,
W. H.
, and
Wang
,
J. Q.
,
2013
, “
Erosion–Corrosion of HVOF-Sprayed Fe-Based Amorphous Metallic Coating Under Impingement by a Sand-Containing NaCl Solution
,”
Corros. Sci.
,
76
, pp.
337
347
.
82.
Nguyen
,
Q. B.
,
Lim
,
C. Y. H.
,
Nguyen
, V
. B.
,
Wan
,
Y. M.
,
Nai
,
B.
,
Zhang
,
Y. W.
, and
Gupta
,
M.
,
2014
, “
Slurry Erosion Characteristics and Erosion Mechanisms of Stainless Steel
,”
Tribol. Int.
,
79
, pp.
1
7
.
You do not currently have access to this content.