Metallic microparticles of 5–100 μm in size often contaminate elastohydrodynamic (EHD) contacts and indent surfaces. The geometrical characteristics of dents by such solid particles are linked to the way surface damage may evolve and how it may affect the life of the damaged contacts. In many cases, debris dents appear with shoulders raised above the original surface. Material piling-up this way causes high-pressure spikes when dents are over-rolled by an element such as a ball in a rolling bearing. This study introduces an approximate analytical method based on the so-called expanding cavity model (ECM) to calculate pile-up geometry with simple algebraic equations in thermoviscoplastic indentation of rolling EHD contacts by ductile spherical microparticles. Based on an experimentally validated debris indentation model published by the author, the pile-up model is shown to give realistic predictions in a wide range of operating parameters. Upon experimental validation, the new model is used to study the effects of particle size and hardness, Coulomb friction coefficient (CFC), strain hardening, and rolling velocity of EHD contacts on pile-up geometrical parameters including length, height, volume, and curvature.

References

References
1.
Nikas
,
G. K.
,
2010
, “
A State-of-the-Art Review on the Effects of Particulate Contamination and Related Topics in Machine-Element Contacts
,”
J. Eng. Tribol.
,
224
(
5
), pp.
453
479
.
2.
Nikas
,
G. K.
,
2009
, “
Review of Studies on the Detrimental Effects of Solid Contaminants in Lubricated Machine Element Contacts
,”
Reliability Engineering Advances
,
G. I.
Hayworth
, ed.,
Nova Science Publishers
,
New York
, Chap. 1.
3.
Hirano
,
F.
, and
Yamamoto
,
S.
,
1959
, “
Four-Ball Test on Lubricating Oils Containing Solid Particles
,”
Wear
,
2
(
5
), pp.
349
363
.
4.
Fitzsimmons
,
B.
, and
Clevenger
,
H. D.
,
1977
, “
Contaminated Lubricants and Tapered Roller Bearing Wear
,”
ASLE Trans.
,
20
(
2
), pp.
97
107
.
5.
Fodor
,
J.
,
1979
, “
Improving Utilisation of Potential I.C. Engine Life by Filtration
,”
Tribol. Int.
,
12
(
3
), pp.
127
129
.
6.
Ronen
,
A.
,
Malkin
,
S.
, and
Loewy
,
K.
,
1980
, “
Wear of Dynamically Loaded Hydrodynamic Bearings by Contaminant Particles
,”
ASME J. Lubr. Technol.
,
102
(
4
), pp.
452
458
.
7.
Ronen
,
A.
, and
Malkin
,
S.
,
1981
, “
Wear Mechanism of Statically Loaded Hydrodynamic Bearings by Contaminant Abrasive Particles
,”
Wear
,
68
(
3
), pp.
371
389
.
8.
Ronen
,
A.
, and
Malkin
,
S.
,
1983
, “
Investigation of Friction and Wear of Dynamically Loaded Hydrodynamic Bearings With Abrasive Contaminants
,”
ASME J. Lubr. Technol.
,
105
(
4
), pp.
559
569
.
9.
Khorshid
,
E. A.
, and
Nawwar
,
A. M.
,
1991
, “
A Review of the Effect of Sand Dust and Filtration on Automobile Engine Wear
,”
Wear
,
141
(
2
), pp.
349
371
.
10.
Rabinowicz
,
E.
, and
Mutis
,
A.
,
1965
, “
Effect of Abrasive Particle Size on Wear
,”
Wear
,
8
(
5
), pp.
381
390
.
11.
Larsen-Badse
,
J.
,
1968
, “
Influence of Grit Size on the Groove Formation During Sliding Abrasion
,”
Wear
,
11
(
3
), pp.
213
222
.
12.
Larsen-Badse
,
J.
,
1968
, “
Influence of Grit Diameter and Specimen Size on Wear During Sliding Abrasion
,”
Wear
,
12
(
1
), pp.
35
53
.
13.
Richardson
,
R. C. D.
,
1968
, “
The Wear of Metals by Relatively Soft Abrasives
,”
Wear
,
11
(
4
), pp.
245
275
.
14.
Xuan
,
J. L.
,
Hong
,
I. T.
, and
Fitch
,
E. C.
,
1989
, “
Hardness Effect on Three-Body Abrasive Wear Under Fluid Film Lubrication
,”
ASME J. Tribol.
,
111
(
1
), pp.
35
40
.
15.
Williams
,
J. A.
, and
Hyncica
,
A. M.
,
1992
, “
Abrasive Wear in Lubricated Contacts
,”
J. Phys. D. Appl. Phys.
,
25
(
1
A), pp.
81
90
.
16.
Dwyer-Joyce
,
R. S.
,
Sayles
,
R. S.
, and
Ioannides
,
E.
,
1994
, “
An Investigation Into the Mechanisms of Closed Three-Body Abrasive Wear
,”
Wear
,
175
(
1–2
), pp.
133
142
.
17.
Hamilton
,
R. W.
,
Sayles
,
R. S.
, and
Ioannides
,
E.
,
1997
, “
Wear Due to Debris Particles in Rolling Bearing Contacts
,”
24th Leeds-Lyon Symposium on Tribology
, London, UK, Sept. 4–6, Elsevier Tribology and Interface Engineering Series, Vol. 34, Elsevier, Amsterdam, The Netherlands, pp. 87–93.
18.
Dwyer-Joyce
,
R. S.
,
1999
, “
Predicting the Abrasive Wear of Ball Bearings by Lubricant Debris
,”
Wear
,
233–235
, pp.
692
701
.
19.
Grieve
,
D. G.
,
Dwyer-Joyce
,
R. S.
, and
Beynon
,
J. H.
,
2001
, “
Abrasive Wear of Railway Track by Solid Contaminants
,”
J. Rail Rapid Transit
,
215
(
3
), pp.
193
205
.
20.
Nilsson
,
R.
,
Dwyer-Joyce
,
R. S.
, and
Olofsson
,
U.
,
2006
, “
Abrasive Wear of Rolling Bearings by Lubricant Borne Particles
,”
J. Eng. Tribol.
,
220
(
5
), pp.
429
439
.
21.
Nikas
,
G. K.
,
Sayles
,
R. S.
, and
Ioannides
,
E.
,
1998
, “
Effects of Debris Particles in Sliding/Rolling Elastohydrodynamic Contacts
,”
J. Eng. Tribol.
,
212
(
5
), pp.
333
343
.
22.
Nikas
,
G. K.
,
1999
, “
Theoretical Modelling of the Entrainment and Thermomechanical Effects of Contamination Particles in Elastohydrodynamic Contacts
,” Ph.D. thesis, Department of Mechanical Engineering, Imperial College London, London.
23.
Nikas
,
G. K.
,
Ioannides
,
E.
, and
Sayles
,
R. S.
,
1999
, “
Thermal Modeling and Effects From Debris Particles in Sliding/Rolling EHD Line Contacts—A Possible Local Scuffing Mode
,”
ASME J. Tribol.
,
121
(
2
), pp.
272
281
.
24.
Nikas
,
G. K.
,
Sayles
,
R. S.
, and
Ioannides
,
E.
,
1999
, “
Thermoelastic Distortion of EHD Line Contacts During the Passage of Soft Debris Particles
,”
ASME J. Tribol.
,
121
(
2
), pp.
265
271
.
25.
Nikas
,
G. K.
,
2001
, “
An Advanced Model to Study the Possible Thermomechanical Damage of Lubricated Sliding-Rolling Line Contacts From Soft Particles
,”
ASME J. Tribol.
,
123
(
4
), pp.
828
841
.
26.
Nikas
,
G. K.
,
2013
, “
Debris Particle Indentation and Abrasion of Machine-Element Contacts: An Experimentally Validated, Thermoelastoplastic Numerical Model With Micro-Hardness and Frictional Heating Effects
,”
J. Eng. Tribol.
,
227
(
6
), pp.
579
617
.
27.
Nikas
,
G. K.
,
2014
, “
Strain-Rate Effects on the Plastic Indentation and Abrasion of Elastohydrodynamic Contacts by Debris Particles
,”
J. Eng. Tribol.
,
228
(
1
), pp.
22
45
.
28.
Nikas
,
G. K.
,
2015
, “
Modeling Dark and White Layer Formation on Elastohydrodynamically Lubricated Steel Surfaces by Thermomechanical Indentation or Abrasion by Metallic Particles
,”
ASME J. Tribol.
,
137
(
3
), p.
031504
.
29.
Miettinen
,
J.
, and
Andersson
,
P.
,
2000
, “
Acoustic Emission of Rolling Bearings Lubricated With Contaminated Grease
,”
Tribol. Int.
,
33
(
11
), pp.
777
787
.
30.
Peng
,
Z.
,
Kessissoglou
,
N. J.
, and
Cox
,
M.
,
2005
, “
A Study of the Effect of Contaminant Particles in Lubricants Using Wear Debris and Vibration Condition Monitoring Techniques
,”
Wear
,
258
(
11–12
), pp.
1651
1662
.
31.
Akagaki
,
T.
,
Nakamura
,
M.
,
Monzen
,
T.
, and
Kawabata
,
M.
,
2006
, “
Analysis of the Behaviour of Rolling Bearings in Contaminated Oil Using Some Condition Monitoring Techniques
,”
J. Eng. Tribol.
,
220
(
5
), pp.
447
453
.
32.
Sari
,
M. R.
,
Haiahem
,
A.
, and
Flamand
,
L.
,
2007
, “
Effect of Lubricant Contamination on Gear Wear
,”
Tribol. Lett.
,
27
(
1
), pp.
119
126
.
33.
Mizuhara
,
K.
,
Tomimoto
,
M.
, and
Yamamoto
,
T.
,
2000
, “
Effect of Particles on Lubricated Friction
,”
Tribol. Trans.
,
43
(
1
), pp.
51
56
.
34.
Tomimoto
,
M.
,
Mizuhara
,
K.
, and
Yamamoto
,
T.
,
2002
, “
Effect of Particles on Lubricated Friction—Theoretical Analysis of Friction Caused by Particles in Journal Bearing
,”
Tribol. Trans.
,
45
(
1
), pp.
47
54
.
35.
Roach
,
A. E.
,
1951
, “
Performance of Oil-Film Bearings With Abrasive Containing Lubrication
,”
ASME Trans.
,
73
, pp.
677
686
.
36.
Rylander
,
H. G.
,
1952
, “
Effects of Solid Inclusions in Sleeve-Bearing Oil Supply
,”
Mech. Eng.
,
74
, pp.
963
966
.
37.
Broeder
,
J. J.
, and
Heijnekamp
,
J. W.
,
1965
1966
, “
Abrasive Wear of Journal Bearings by Particles in the Oil
,”
Proc. Inst. Mech. Eng.
,
180
(
3k
), pp.
21
31
.
38.
Sari
,
M. R.
,
Ville
,
F.
,
Haiahem
,
A.
, and
Flamand
,
L.
,
2010
, “
Effect of Lubricant Contamination on Friction and Wear in an EHL Sliding Contact
,”
Mechanika
,
82
(
2
), pp.
43
49
.
39.
Handschuh
,
R. F.
, and
Krantz
,
T. L.
,
2010
, “
Engagement of Metal Debris Into a Gear Mesh
,” The National Aeronautics and Space Administration, Washington, DC, Report No. NASA/TM 2010-216759.
40.
Green
,
D. A.
, and
Lewis
,
R.
,
2008
, “
The Effects of Soot-Contaminated Engine Oil on Wear and Friction: A Review
,”
J. Automob. Eng.
,
222
(
9
), pp.
1669
1689
.
41.
Wan
,
G. T. Y.
, and
Spikes
,
H. A.
,
1988
, “
The Behavior of Suspended Solid Particles in Rolling and Sliding Elastohydrodynamic Contacts
,”
Tribol. Trans.
,
31
(
1
), pp.
12
21
.
42.
Enthoven
,
J. C.
, and
Spikes
,
H. A.
,
1994
, “
Visual Observation of the Process of Scuffing
,”
21st Leeds-Lyon Symposium on Tribology
, Leeds, UK, Sept. 6–9, Elsevier Tribology and Interface Engineering Series, Vol. 30, Elsevier, Amsterdam, The Netherlands, pp. 487–494.
43.
Sato
,
H.
,
Tokuoka
,
N.
,
Yamamoto
,
H.
, and
Sasaki
,
M.
,
1999
, “
Study of Wear Mechanism by Soot Contaminated in Engine Oil
,” SAE Paper No. 1999-01-3573.
44.
Green
,
D. A.
,
Lewis
,
R.
, and
Dwyer-Joyce
,
R. S.
,
2006
, “
Wear Effects and Mechanisms of Soot Contaminated Automotive Lubricants
,”
J. Eng. Tribol.
,
220
(
3
), pp.
159
169
.
45.
Moon
,
M.
,
2007
, “
How Clean are Your Lubricants?
Trends Food Sci. Technol.
,
18
(
Suppl. 1
), pp.
S74
S88
.
46.
Needelman
,
W. M.
, and
Zaretsky
,
E. V.
,
1991
, “
Quantifying Oil Filtration Effects on Bearing Life
,” The National Aeronautics and Space Administration, Washington, DC, Report No. NASA TM 104350.
47.
Okamoto
,
J.
,
Fujita
,
K.
, and
Toshioka
,
T.
,
1972
, “
Effects of Solid Particles in Oil on the Life of Ball Bearings
,”
J. Mech. Eng. Lab. (Tokyo)
,
26
(
5
), pp.
228
238
(NASA Technical Translation, NASA TT F-15, 653, June
1974
).
48.
Dalal
,
H.
,
Cotellesse
,
G.
,
Morrison
,
F.
, and
Ninos
,
N.
,
1974
, “
Progression of Surface Damage in Rolling Contact Fatigue
,” SKF Industries Inc., King of Prussia PA Research Laboratory, Final Report, No. N00014-73-C-0461.
49.
Tallian
,
T. E.
,
1976
, “
Prediction of Rolling Contact Fatigue Life in Contaminated Lubricant: Part II—Experimental
,”
ASME J. Lubr. Technol.
,
98
(
3
), pp.
384
392
.
50.
Loewenthal
,
S. H.
, and
Moyer
,
D. W.
,
1979
, “
Filtration Effects on Ball Bearing Life and Condition in a Contaminated Lubricant
,”
ASME J. Lubr. Technol.
,
101
(
2
), pp.
171
176
.
51.
Bhachu
,
R. S.
,
1980
, “
The Influence of Debris on Rolling Fatigue Life
,” Ph.D. thesis, Imperial College, University of London, London.
52.
Sayles
,
R. S.
, and
Macpherson
,
P. B.
,
1982
, “
The Influence of Wear Debris on Rolling Contact Fatigue
,” Rolling Contact Fatigue Testing in Bearing Steels, Philadelphia, PA, pp.
255
275
, ASTM STP 771.
53.
Bhachu
,
R.
,
Sayles
,
R. S.
, and
Macpherson
,
P. B.
,
1981
, “
The Influence of Filtration on Rolling Element Bearing Life
,”
Innovation for Maintenance Technology Improvements
,
T. R.
Shives
and
W. A.
Willard
, eds.,
The National Aeronautics and Space Administration
,
Washington, DC
, Report No. NASA CR 172821.
54.
Loewenthal
,
S. H.
,
Moyer
,
D. W.
, and
Needelman
,
W. M.
,
1982
, “
Effects of Ultra-Clean and Centrifugal Filtration on Rolling-Element Bearing Life
,”
ASME J. Lubr. Technol.
,
104
(
3
), pp.
283
291
.
55.
Webster
,
M. N.
,
Ioannides
,
E.
, and
Sayles
,
R. S.
,
1985
, “
The Effect of Topographical Defects on the Contact Stress and Fatigue Life in Rolling Element Bearings
,”
12th Leeds-Lyon Symposium on Tribology
, Lyon, France, Sept. 3–6, Butterworth, London, pp.
207
221
.
56.
Hamer
,
J. C.
,
Lubrecht
,
A. A.
,
Ioannides
,
E.
, and
Sayles
,
R. S.
,
1988
, “
Surface Damage on Rolling Elements and Its Subsequent Effects on Performance and Life
,”
15th Leeds-Lyon Symposium on Tribology
, Leeds, UK, Sept. 6–9, Elsevier Tribology and Interface Engineering Series, Vol. 14, Elsevier, Amsterdam, The Netherlands, pp. 189–197.
57.
Dwyer-Joyce
,
R. S.
,
Hamer
,
J. C.
,
Sayles
,
R. S.
, and
Ioannides
,
E.
,
1991
, “
Lubricant Screening for Debris Effects to Improve Fatigue and Wear Life
,”
18th Leeds-Lyon Symposium on Tribology
, Lyon, France, Sept. 3–6, Elsevier Tribology and Interface Engineering Series, Vol. 14, Elsevier, Amsterdam, The Netherlands, pp. 57–63.
58.
Nixon
,
H. P.
, and
Zantopulos
,
H.
,
1995
, “
Fatigue Life Performance Comparisons of Tapered Roller Bearings With Debris-Damaged Raceways
,”
Lubr. Eng.
,
51
(
9
), pp.
732
736
.
59.
Chao
,
K. K.
,
Saba
,
C. S.
, and
Centers
,
P. W.
,
1996
, “
Effects of Lubricant Borne Solid Debris in Rolling Surface Contacts
,”
Tribol. Trans.
,
39
(
1
), pp.
13
22
.
60.
Ville
,
F.
, and
Nelias
,
D.
,
1999
, “
Early Fatigue Failure Due to Dents in EHL Contacts
,”
Tribol. Trans.
,
42
(
4
), pp.
795
800
.
61.
Kahlman
,
L.
, and
Hutchings
,
I. M.
,
1999
, “
Effect of Particulate Contamination in Grease-Lubricated Hybrid Rolling Bearings
,”
Tribol. Trans.
,
42
(
4
), pp.
842
850
.
62.
Nélias
,
D.
, and
Ville
,
F.
,
2000
, “
Detrimental Effects of Debris Dents on Rolling Contact Fatigue
,”
ASME J. Tribol.
,
122
(
1
), pp.
55
64
.
63.
Nilsson
,
R.
,
Olofsson
,
U.
, and
Sundvall
,
K.
,
2005
, “
Filtration and Coating Effects on Self-Generated Particle Wear in Boundary Lubricated Roller Bearings
,”
Tribol. Int.
,
38
(
2
), pp.
145
150
.
64.
Ville
,
F.
,
Coulon
,
S.
, and
Lubrecht
,
A. A.
,
2006
, “
Influence of Solid Contaminants on the Fatigue Life of Lubricated Machine Elements
,”
J. Eng. Tribol.
,
220
(
5
), pp.
441
445
.
65.
SKF
,
2003
,
General Catalogue 5000 E
,
SKF
,
Germany
.
66.
Ai
,
X.
,
2001
, “
Effect of Debris Contamination on the Fatigue Life of Roller Bearings
,”
J. Eng. Tribol.
,
215
(
6
), pp.
563
575
.
67.
General Motors Corporation
,
1971
,
New Departure Handbook
,
7th ed.
,
Bristol, CT
.
68.
Wedeven
,
L. D.
,
1979
, “
Diagnostics of Wear in Aeronautical Systems
,” The National Aeronautics and Space Administration, Washington, DC, Report No. NASA TM 79185.
69.
Cunningham
,
J. S.
, and
Morgan
,
M. A.
,
1979
, “
Review of Aircraft Bearing Rejection Criteria and Causes
,”
ASLE Lubr. Eng.
,
35
(
8
), pp.
435
441
.
70.
Needelman
,
W. M.
, and
Zaretsky
,
E. V.
,
2015
, “
Recalibrated Equations for Determining Effect of Oil Filtration on Rolling Bearing Life
,”
Tribol. Trans.
,
58
(
5
), pp.
786
800
.
71.
Hamer
,
J. C.
,
Sayles
,
R. S.
, and
Ioannides
,
E.
,
1987
, “
Deformation Mechanisms and Stresses Created by 3rd Body Debris Contacts and Their Effects on Rolling Bearing Fatigue
,”
14th Leeds-Lyon Symposium on Tribology
, Lyon, France, Sept. 8–11, Elsevier Tribology and Interface Engineering Series, Vol. 12, Elsevier, Amsterdam, The Netherlands, pp. 201–208.
72.
Hamer
,
J. C.
,
Sayles
,
R. S.
, and
Ioannides
,
E.
,
1989
, “
Particle Deformation and Counterface Damage When Relatively Soft Particles are Squashed Between Hard Anvils
,”
Tribol. Trans.
,
32
(
3
), pp.
281
288
.
73.
Hamer
,
J. C.
, and
Hutchinson
,
J.
,
1992
, “
Denting of Rolling Element Bearings by Third Body Particles
,” Tribology Group, Mechanical Engineering Department, Imperial College London, London, PCS Report No. 33/92.
74.
Dwyer-Joyce
,
R. S.
,
1993
, “
The Effects of Lubricant Contamination on Rolling Bearing Performance
,” Ph.D. thesis, Department of Mechanical Engineering, Imperial College London, London.
75.
Ko
,
C. N.
, and
Ioannides
,
E.
,
1989
, “
Debris Denting—The Associated Residual Stresses and Their Effect on the Fatigue Life of Rolling Bearings: An FEM Analysis
,”
Tribological Design of Machine Elements
,
D.
Dowson
,
C. M.
Taylor
,
M.
Godet
, and
D.
Berthe
, eds.,
Elsevier
,
Amsterdam, The Netherlands
, pp.
199
207
.
76.
Xu
,
G.
,
Sadeghi
,
F.
, and
Cogdell
,
J. D.
,
1997
, “
Debris Denting Effects on Elastohydrodynamic Lubricated Contacts
,”
ASME J. Tribol.
,
119
(
3
), pp.
579
587
.
77.
Kang
,
Y. S.
,
Sadeghi
,
F.
, and
Hoeprich
,
M. R.
,
2004
, “
A Finite Element Model for Spherical Debris Denting in Heavily Loaded Contacts
,”
ASME J. Tribol.
,
126
(
1
), pp.
71
80
.
78.
Antaluca
,
E.
, and
Nélias
,
D.
,
2008
, “
Contact Fatigue Analysis of a Dented Surface in a Dry Elastic-Plastic Circular Point Contact
,”
Tribol. Lett.
,
29
(
2
), pp.
139
153
.
79.
Nikas
,
G. K.
,
2012
, “
An Experimentally Validated Numerical Model of Indentation and Abrasion by Debris Particles in Machine-Element Contacts Considering Micro-Hardness Effects
,”
J. Eng. Tribol.
,
226
(
5
), pp.
406
438
.
80.
Webster
,
M. N.
,
1986
, “
Measurement and Contact Analysis of Engineering Surfaces
,” Ph.D. thesis, Department of Mechanical Engineering, Imperial College, University of London, London, UK.
81.
Sayles
,
R. S.
, and
Ioannides
,
E.
,
1988
, “
Debris Damage in Rolling Bearings and Its Effects on Fatigue Life
,”
ASME J. Tribol.
,
110
(
1
), pp.
26
31
.
82.
Xu
,
G.
,
Sadeghi
,
F.
, and
Hoeprich
,
M.
,
1997
, “
Residual Stresses Due to Debris Effects in EHL Contacts
,”
Tribol. Trans.
,
40
(
4
), pp.
613
620
.
83.
Coulon
,
S.
,
Ville
,
F.
, and
Lubrecht
,
A. A.
,
2002
, “
Effect of a Dent on the Pressure Distribution in Dry Point Contacts
,”
ASME J. Tribol.
,
124
(
1
), pp.
220
223
.
84.
Coulon
,
S.
,
Jubault
,
I.
,
Lubrecht
,
A. A.
,
Ville
,
F.
, and
Vergne
,
P.
,
2004
, “
Pressure Profiles Measured Within Lubricated Contacts in Presence of Dented Surfaces. Comparison With Numerical Models
,”
Tribol. Int.
,
37
(
2
), pp.
111
117
.
85.
Underwood
,
R. J.
,
2008
, “
The Tribological Effects of Contamination in Rolling Element Bearings
,” Ph.D. thesis, Department of Mechanical Engineering, Imperial College London, London.
86.
Matthews
,
J. R.
,
1980
, “
Indentation Hardness and Hot Pressing
,”
Acta Metall.
,
28
(
3
), pp.
311
318
.
87.
Hill
,
R.
,
Storakers
,
B.
, and
Zdunek
,
A. B.
,
1989
, “
A Theoretical Study of the Brinell Hardness Test
,”
Proc. R. Soc. London A
,
423
(
1865
), pp.
301
330
.
88.
Taljat
,
B.
, and
Pharr
,
G. M.
,
2004
, “
Development of Pile-Up During Spherical Indentation of Elastic–Plastic Solids
,”
Int. J. Solids Struct.
,
41
(
14
), pp.
3891
3904
.
89.
Lee
,
H.
,
Lee
,
J. H.
, and
Pharr
,
G. M.
,
2005
, “
A Numerical Approach to Spherical Indentation Techniques for Material Property Evaluation
,”
J. Mech. Phys. Solids
,
53
(
9
), pp.
2037
2069
.
90.
Hernot
,
X.
,
Bartier
,
O.
,
Bekouche
,
Y.
,
El Abdi
,
R.
, and
Mauvoisin
,
G.
,
2006
, “
Influence of Penetration Depth and Mechanical Properties on Contact Radius Determination for Spherical Indentation
,”
Int. J. Solids Struct.
,
43
(
14–15
), pp.
4136
4153
.
91.
Kim
,
S. H.
,
Lee
,
B. W.
,
Choi
,
Y.
, and
Kwon
,
D.
,
2006
, “
Quantitative Determination of Contact Depth During Spherical Indentation of Metallic Materials—A FEM Study
,”
Mater. Sci. Eng. A
,
415
(
1–2
), pp.
59
65
.
92.
Bartier
,
O.
,
Hernot
,
X.
, and
Mauvoisin
,
G.
,
2010
, “
Theoretical and Experimental Analysis of Contact Radius for Spherical Indentation
,”
Mechanics Mater.
,
42
(
6
), pp.
640
656
.
93.
Feng
,
G.
,
Qu
,
S.
,
Huang
,
Y.
, and
Nix
,
W. D.
,
2009
, “
A Quantitative Analysis for the Stress Field Around an Elastoplastic Indentation/Contact
,”
J. Mater. Res.
,
24
(
3
), pp.
704
718
.
94.
Mindlin
,
R. D.
, and
Cheng
,
D. H.
,
1950
, “
Thermoelastic Stress in the Semi-Infinite Solid
,”
J. Appl. Phys.
,
21
(
9
), pp.
931
933
.
95.
Hernot
,
X.
, and
Bartier
,
O.
,
2012
, “
An Expanding Cavity Model Incorporating Pile-Up and Sink-In Effects
,”
J. Mater. Res.
,
27
(
1
), pp.
132
140
.
96.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
, Sec. 6.3.
97.
Gao
,
X.-L.
,
2006
, “
An Expanding Cavity Model Incorporating Strain-Hardening and Indentation Size Effects
,”
Int. J. Solids Struct.
,
43
(
21
), pp.
6615
6629
.
98.
Norbury
,
A. L.
, and
Samuel
,
T.
,
1928
, “
The Recovery and Sinking-In or Piling-Up of Material in the Brinell Test
,”
J. Iron Steel Inst.
,
117
, pp.
673
687
.
99.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1983
, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,”
7th International Symposium on Ballistics
, The Hague, The Netherlands, pp.
541
547
.
100.
Brent
,
R. P.
,
1973
, “
Some Efficient Algorithms for Solving Systems of Nonlinear Equations
,”
SIAM J. Num. Anal.
,
10
(
2
), pp.
327
344
.
101.
SSL II User's Guide
,
1989
, Fujitsu Ltd., Japan, Report No. 99SP4020E-1.
102.
Zwillinger
,
D.
, ed.,
2003
,
CRC Standard Mathematical Tables and Formulae
,
Chapman & Hall/CRC
,
London
.
103.
Ai
,
X.
, and
Hager
,
C.
, “
Forensic Analysis of Surface Indentations in Rolling Contact
,”
ASME J. Tribol.
,
138
(
1
), p. 011101
104.
Ville
,
F.
, and
Nelias
,
D.
,
1999
, “
An Experimental Study of the Concentration and Shape of Dents Caused by Spherical Metallic Particles in EHL Contacts
,”
Tribol. Trans.
,
42
(
1
), pp.
231
240
.
105.
Cahoon
,
J.
,
Broughton
,
W.
, and
Kutzak
,
A.
,
1971
, “
The Determination of Yield Strength From Hardness Measurements
,”
Metall. Mater. Trans. B
,
2
(
7
), pp.
1979
1983
.
106.
Stickels
,
C. A.
,
1977
, “
Plastic Deformation of Quenched and Tempered 52100 Bearing Steel in Compression
,”
Metall. Trans. A
,
8
(
1
), pp.
63
70
.
107.
Bhadeshia
,
H. K. D. H.
,
2012
, “
Steels for Bearings
,”
Prog. Mater. Sci.
,
57
(
2
), pp.
268
435
.
You do not currently have access to this content.